Alexander Y. Klimenko

Learn More
Non-traditional thermodynamics, applied to random behaviour associated with turbulence, mixing and competition, is reviewed and analysed. Competitive mixing represents a general framework for the study of generic properties of competitive systems and can be used to model a wide class of non-equilibrium phenomena ranging from turbulent premixed flames and(More)
This publication reviews the framework of abstract competition, which is aimed at studying complex systems with competition in their generic form. Although the concept of abstract competition has been derived from a specific field--modelling of mixing in turbulent reacting flows--this concept is, generally, not attached to a specific phenomenon or(More)
This work gives a brief summary of major formulations of the third law of thermodynamics and their implications, including the impossibility of perpetual motion of the third kind. The last sections of this work review more advanced applications of the third law to systems with negative temperatures and negative heat capacities. The relevance of the third(More)
Most of the asymptotic considerations of the interaction of premixed flames with a general flow, i.e. curved and stretched flames subjected to time dependent flow, are dedicated to high activation energy asymptotes. Therefore, in these considerations the reaction zone is thin and the temperature within the reaction zone is constant to the leading order of(More)
This paper investigates the applicability of thermodynamic concepts and principles to competitive systems. We show that Tsallis entropies are suitable for the characterisation of systems with transitive competition when mutations deviate from Gibbs mutations. Different types of equilibria in competitive systems are considered and analysed. As competition(More)
A general approach for investigating transport phenomena in porous media is presented. This approach has the capacity to represent various kinds of irregularity in porous media without the need for excessive detail or computational effort. The overall method combines a generalized effective medium approximation (EMA) with a macroscopic continuum model in(More)
Gasification of coal or biomass with in-situ CO2 capture is an emerging technology aiming to address the problem of climate change. Development of a CO2 sorbent with desirable properties and understanding the behavior of such a material in carbonation/calcination reactions is an important part of developing the technology. In this paper, we report(More)