Learn More
The ultimate aim of realistic graphics is the creation of images that provoke the same responses that a viewer would have to a real scene. This STAR addresses two related key problem areas in this effort which are located at opposite ends of the rendering pipeline, namely the data structures used to describe light during the actual rendering process, and(More)
We propose a practicable way to include both polarization and fluorescence effects in a rendering system at the same time. Previous research in this direction only demonstrated support for either one of these phenomena; using both effects simultaneously was so far not possible, mainly because the techniques for the treatment of polarized light were(More)
Fluorescence is an interesting and visually prominent effect, which has not been fully covered by Computer Graphics research so far.While the physical phenomenon of fluorescence has been addressed in isolation, the actual reflection behaviour of real fluorescent surfaces has never been documented, and no analytical BRDF models for such surfaces have been(More)
Within computer graphics, the field of predictive rendering is concerned with those methods of image synthesis that yield results that do not only look real, but are also radiometrically correct renditions of nature, i.e. which are accurate predictions of what a real scene would look like under given lighting conditions. In order to guarantee the(More)
As a general approach to procedural mesh definition we propose two mechanisms for mesh modification: generalized subdivision and rule based mesh growing. In standard subdivision, a specific subdivision rule is applied to a mesh to get a succession of meshes converging to a limit surface. A generalized approach allows different subdivision rules at each(More)