Alexander V. Sergienko

Learn More
We demonstrate that two recent innovations in the field of practical quantum key distribution (one-way autocompensation and passive detection) are closely related to the methods developed to protect quantum computations from decoherence. We present a new scheme that combines these advantages, and propose a practical implementation of this scheme that is(More)
We present an experimental demonstration of quantum-optical coherence tomography. The technique makes use of an entangled twin-photon light source to carry out axial optical sectioning. It is compared to conventional optical coherence tomography. The immunity of the quantum version to dispersion, as well as a factor of 2 enhancement in resolution, is(More)
We propose a technique, called quantum-optical coherence tomography ͑QOCT͒, for carrying out tomogra-phic measurements with dispersion-cancelled resolution. The technique can also be used to extract the frequency-dependent refractive index of the medium. QOCT makes use of a two-photon interferometer in which a swept delay permits a coincidence interferogram(More)
The use of entangled photons in an imaging system can exhibit effects that cannot be mimicked by any other two-photon source, whatever the strength of the correlations between the two photons. We consider a two-photon imaging system in which one photon is used to probe a remote (transmissive or scattering) object, while the other serves as a reference. We(More)
We generate ultrabroadband biphotons via the process of spontaneous parametric down-conversion (SPDC) in quasi-phase-matched nonlinear gratings that have a linearly chirped wave vector. By using these ultrabroadband biphotons (300-nm bandwidth), we measure the narrowest Hong-Ou-Mandel dip to date, having a full width at half maximum of 7.1 fs. This enables(More)
Quantum optical coherence tomography (QOCT) makes use of an entangled twin-photon light source to carry out axial optical sectioning. We have probed the longitudinal structure of a sample comprising multiple surfaces in a dispersion-cancelled manner while simultaneously measuring the group-velocity dispersion of the interstitial media between the reflecting(More)
Entangled-photon pairs ͑biphotons͒ generated by spontaneous optical parametric down-conversion exhibit a number of properties that are analogous to those of ordinary photons generated by incoherent sources. The spatial pump-field distribution and the two-particle wave function in the biphoton case play the respective roles of the source intensity(More)
We show theoretically that a chirped quasi-phase-matching nonlinear crystal structure can significantly enhance the axial resolution in quantum optical coherence tomography by increasing the spectral width of the generated entangled photon pairs. For pulsed pumps we show how the pump-pulse duration affects the maximum resolution attainable.
A periodically poled lithium niobate (PPLN) crystal has been used as an efficient source of non-collinearly generated polarization-entangled photon pairs at 810 and 1550 nm. The PPLN crystal was endowed with a specially designed poling pattern and the entangled photons were generated via the nonlinear optical process of spontaneous parametric down(More)