Alexander V. Nazin

Learn More
We consider a recursive algorithm to construct an aggregated esti-mator from a finite number of base decision rules in the classification problem. The estimator approximately minimizes a convex risk functional under the ℓ 1-constraint. It is defined by a stochastic version of the mirror descent algorithm (i.e., of the method which performs gradient descent(More)
The problem of finding the eigenvector corresponding to the largest eigenvalue of a stochastic matrix has numerous applications in ranking search results, multi-agent consensus, networked control and data mining. The well known power method is a typical tool for its solution. However randomized methods could be competitors vs standard ones; they require(More)
— The problem of finding the eigenvector corresponding to the largest eigenvalue of a stochastic matrix has numerous applications in ranking search results, multi-agent consensus, networked control and data mining. The well-known power method is a typical tool for its solution. However randomized methods could be competitors vs standard ones; they require(More)
We consider the problem of constructing an aggregated estimator from a finite class of base functions which approximately minimizes a convex risk functional under the ℓ 1 constraint. For this purpose, we propose a stochastic procedure, the mirror descent, which performs gradient descent in the dual space. The generated estimates are additionally averaged in(More)
The direct weight optimization (DWO) approach is a method for finding optimal function estimates via convex optimization, applicable to nonlinear system identification. In this paper, an extended version of the DWO approach is introduced. A general function class description — which includes several important special cases — is presented, and different(More)
A general framework for estimating nonlinear functions and systems is described and analyzed in this paper. Identification of a system is seen as estimation of a predictor function. The considered predictor function estimate at a particular point is defined to be affine in the observed outputs, and the estimate is defined by the weights in this expression.(More)