Alexander V. Lukashin

Learn More
MOTIVATION Cluster analysis of genome-wide expression data from DNA microarray hybridization studies has proved to be a useful tool for identifying biologically relevant groupings of genes and samples. In the present paper, we focus on several important issues related to clustering algorithms that have not yet been fully studied. RESULTS We describe a(More)
As a dynamical model for motor cortical activity during hand movement we consider an artificial neural network that consists of extensively interconnected neuron-like units and performs the neuronal population vector operations. Local geometrical parameters of a desired curve are introduced into the network as an external input. The output of the model is a(More)
Understanding the neural computations performed by the motor cortex requires biologically plausible models that account for cell discharge patterns revealed by neurophysiological recordings. In the present study the motor cortical activity underlying movement generation is modeled as the dynamic evolution of a large fully recurrent network of stochastic(More)
MOTIVATION Interpretation of high-throughput gene expression profiling requires a knowledge of the design principles underlying the networks that sustain cellular machinery. Recently a novel approach based on the study of network topologies has been proposed. This methodology has proven to be useful for the analysis of a variety of biological systems,(More)
MOTIVATION Local multiple sequence alignment is a basic tool for extracting functionally important regions shared by a family of protein sequences. We present an effectively polynomial-time algorithm for rigorously solving the local multiple alignment problem. RESULTS The algorithm is based on the dead-end elimination procedure that makes it possible to(More)
A neural network with realistically modeled, spiking neurons is proposed to model ensemble operations of directionally tuned neurons in the motor cortex. The model reproduces well directional operations previously identified experimentally, including the prediction of the direction of an upcoming movement in reaching tasks and the rotation of the neuronal(More)
We have developed a model that simulates possible mechanisms by which supraspinal neuronal signals coding forces could converge in the spinal cord and provide an ongoing integrated signal to the motoneuronal pools whose activation results in the exertion of force. The model consists of a three-layered neural network connected to a two-joint-six-muscle model(More)
  • 1