Alexander V. Kononov

Learn More
We propose a unifying framework based on configuration linear programs and randomized rounding, for different energy optimization problems in the dynamic speed-scaling setting. We apply our framework to various scheduling and routing problems in heterogeneous computing and networking environments. We first consider the energy minimization problem of(More)
We are given a set of jobs, each one specified by its release date, its deadline and its processing volume (work), and a single (or a set of) speed-scalable processor(s). We adopt the standard model in speed-scaling in which if a processor runs at speed s then the energy consumption is s units of energy per time unit, where α > 1 is a small constant. Our(More)
In a bounded max-coloring of a vertex/edge weighted graph, each color class is of cardinality at most b and of weight equal to the weight of the heaviest vertex/edge in this class. The bounded max-vertex/edge-coloring problems ask for such a coloring minimizing the sum of all color classes’ weights. In this paper we present complexity results and(More)
In this paper the process of data transmission in optical communication networks is modeled as a shop-type scheduling problem, where channels (wavelengths) are treated as machines. We formulate an Open Block problem with the minimum makespan objective (an OB||Cmax problem) in which a relation of a new type between the operations of each job is introduced:(More)
We present a comprehensive complexity analysis of classical shop scheduling problems subject to various combinations of constraints imposed on the processing times of operations, the maximum number of operations per job, the upper bound on schedule length, and the problem type (taking values “open shop”, “job shop”, “mixed shop”). It is shown that in the(More)