Alexander V. Favorov

Learn More
The prediction of regulatory elements is a problem where computational methods offer great hope. Over the past few years, numerous tools have become available for this task. The purpose of the current assessment is twofold: to provide some guidance to users regarding the accuracy of currently available tools in various settings, and to provide a benchmark(More)
Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene(More)
MOTIVATION Transcription regulatory protein factors often bind DNA as homo-dimers or hetero-dimers. Thus they recognize structured DNA motifs that are inverted or direct repeats or spaced motif pairs. However, these motifs are often difficult to identify owing to their high divergence. The motif structure included explicitly into the motif recognition(More)
SUMMARY ChIP-Seq data are a new challenge for motif discovery. Such a data typically consists of thousands of DNA segments with base-specific coverage values. We present a new version of our DNA motif discovery software ChIPMunk adapted for ChIP-Seq data. ChIPMunk is an iterative algorithm that combines greedy optimization with bootstrapping and uses(More)
It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data(More)
Multiple sclerosis (MS) is an immune-mediated disease of polygenic etiology. Dissection of its genetic background is a complex problem, because of the combinatorial possibilities of gene-gene interactions. As genotyping methods improve throughput, approaches that can explore multigene interactions appropriately should lead to improved understanding of MS.(More)
Carriage frequencies of alleles and genotypes of 10 functionally important single nucleotide polymorphisms that are located in genes FGA, FGB, APOE, LPL, ACE and CMA1 were analyzed in the ischemic stroke (IS) patients of Russian ethnic descent and in the control group of the same ethnic descent and of similar gender and age. Comparison between patients and(More)
MOTIVATION Footprint data is an important source of information on transcription factor recognition motifs. However, a footprinting fragment can contain no sequences similar to known protein recognition sites. Inspection of genome fragments nearby can help to identify missing site positions. RESULTS Genome fragments containing footprints were supplied to(More)
Modeling of signal driven transcriptional reprogramming is critical for understanding of organism development, human disease, and cell biology. Many current modeling techniques discount key features of the biological sub-systems when modeling multiscale, organism-level processes. We present a mechanistic hybrid model, GESSA, which integrates a novel pooled(More)
Identification of transcriptional regulatory regions and tracing their internal organization are important for understanding the eukaryotic cell machinery. Cis-regulatory modules (CRMs) of higher eukaryotes are believed to possess a regulatory 'grammar', or preferred arrangement of binding sites, that is crucial for proper regulation and thus tends to be(More)