Alexander V. Evako

Learn More
In this paper we develop some combinatorial models for continuous spaces. In this spirit we study the approximations of continuous spaces by graphs, molecular spaces and coordinate matrices. We define the dimension on a discrete space by means of axioms, and the axioms are based on an obvious geometrical background. This work presents some discrete models(More)
This paper studies the structure of a parabolic partial differential equation on graphs and digital n-dimensional manifolds, which are digital models of continuous n-manifolds. Conditions for the existence of solutions of equations are determined and investigated. Numerical solutions of the equation on a Klein bottle, a projective plane, a 4D sphere and a(More)
This paper proposes a new cubical space model for the representation of continuous objects and surfaces in the n-dimensional Euclidean space by discrete sets of points. The cubical space model concerns the process of converting a continuous object in its digital counterpart, which is a graph, enabling us to apply notions and operations used in digital(More)
A point of a digital space is called simple if it can be deleted from the space without altering topology. This paper introduces the notion simple set of points of a digital space. The definition is based on contractible spaces and contractible transformations. A set of points in a digital space is called simple if it can be contracted to a point without(More)