Learn More
Validation is a crucial aspect of any quantitative structure-activity relationship (QSAR) modeling. This paper examines one of the most popular validation criteria, leave-one-out cross-validated R2 (LOO q2). Often, a high value of this statistical characteristic (q2 > 0.5) is considered as a proof of the high predictive ability of the model. In this paper,(More)
One of the most important characteristics of Quantitative Structure Activity Relashionships (QSAR) models is their predictive power. The latter can be defined as the ability of a model to predict accurately the target property (e.g., biological activity) of compounds that were not used for model development. We suggest that this goal can be achieved by(More)
After nearly five decades "in the making", QSAR modeling has established itself as one of the major computational molecular modeling methodologies. As any mature research discipline, QSAR modeling can be characterized by a collection of well defined protocols and procedures that enable the expert application of the method for exploring and exploiting ever(More)
Mutational experiments show how changes in the hydrophobic cores of proteins affect their stabilities. Here, we estimate these effects computationally, using four-body likelihood potentials obtained by simplicial neighborhood analysis of protein packing (SNAPP). In this procedure, the volume of a known protein structure is tiled with tetrahedra having the(More)
Delaunay tessellation is applied for the first time in the analysis of protein structure. By representing amino acid residues in protein chains by C alpha atoms, the protein is described as a set of points in three-dimensional space. Delaunay tessellation of a protein structure generates an aggregate of space-filling irregular tetrahedra, or Delaunay(More)
Quantitative Structure-Activity Relationship (QSAR) models are used increasingly to screen chemical databases and/or virtual chemical libraries for potentially bioactive molecules. These developments emphasize the importance of rigorous model validation to ensure that the models have acceptable predictive power. Using k nearest neighbors (kNN) variable(More)
Three-dimensional structure and amino acid sequence of proteins are related by an unknown set of rules that is often referred to as the folding code. This code is believed to be significantly influenced by nonlocal interactions between the residues. A quantitative description of nonlocal contacts requires the identification of neighboring residues. We(More)
A combined approach of validated QSAR modeling and virtual screening was successfully applied to the discovery of novel tylophrine derivatives as anticancer agents. QSAR models have been initially developed for 52 chemically diverse phenanthrine-based tylophrine derivatives (PBTs) with known experimental EC(50) using chemical topological descriptors(More)
We report the development of rigorously validated quantitative structure-activity relationship (QSAR) models for 48 chemically diverse functionalized amino acids with anticonvulsant activity. Two variable selection approaches, simulated annealing partial least squares (SA-PLS) and k nearest neighbor (kNN), were employed. Both methods utilize multiple(More)