#### Filter Results:

- Full text PDF available (18)

#### Publication Year

1996

2014

#### Publication Type

#### Co-author

#### Publication Venue

Learn More

- A R Strohmaier, T Porwol, H Acker, E Spiess
- The journal of histochemistry and cytochemistry…
- 1997

We used the nondestructive procedures of confocal laser scanning microscopy in combination with computer-assisted methods to visualize tumor cells in the process of penetrating collagen gels. Three independent sets of images were collected. The image information of all data sets was combined into one image, giving a three-dimensional (3D) impression at high… (More)

- Alexander Strohmaier, Rainer Verch, Manfred Wollenberg
- 2002

We show in this article that the Reeh-Schlieder property holds for states of quantum fields on real analytic curved spacetimes if they satisfy an analytic microlocal spectrum condition. This result holds in the setting of general quantum field theory, i.e. without assuming the quantum field to obey a specific equation of motion. Moreover, quasifree states… (More)

We show that as soon as a linear quantum field on a stationary spacetime satisfies a certain type of hyperbolic equation, the (quasifree) ground-and KMS-states with respect to the canonical time flow have the Reeh-Schlieder property. We also obtain an analog of Borchers' timelike tube theorem. The class of fields we consider contains the Dirac field, the… (More)

- H. Grosse, A. Strohmaier
- 1999

We give a noncommutative version of the complex projective space CP 2 and show that scalar QFT on this space is free of UV divergencies. The tools necessary to investigate Quantum fields on this fuzzy CP 2 are developed and several possibilities to introduce spinors and Dirac operators are discussed.

We introduce the notion of a semi-Riemannian spectral triple which generalizes the notion of spectral triple and allows for a treatment of semi-Riemannian manifolds within a noncommutative setting. It turns out that the relevant spaces in noncommutative semi-Riemannian geometry are not Hilbert spaces any more but Krein spaces, and Dirac operators are… (More)

This study applies biophysical methods like light absorption spectrophotometry of cytochromes, determination of NAD(P)H-dependent superoxide anion (O2-) formation and localisation of hydroxyl radicals (*OH) by 3-dimensional (3D) confocal laser scanning microscopy to reveal in human cells putative members of the oxygen sensing signal pathway leading to… (More)

Using the theory of quantized equivariant vector bundles over compact coadjoint orbits we determine the Chern characters of all non-commutative line bundles over the fuzzy sphere with regard to its derivation based differential calculus. The associated Chern numbers (topological charges) arise to be non-integer, in the commutative limit the well known… (More)

Human A431 epidermoid carcinoma cells express 12-lipoxygenase enzymatic activity. However, the isoform identity based on cDNA sequence data is not known. Further, the simultaneous characterization of the intracellular distribution of 12-lipoxygenase protein and activity is lacking. Here we report that the cDNA sequence from RT-PCR-amplified 12-lipoxygenase… (More)

We relate high-energy limits of Laplace-type and Dirac-type operators to frame flows on the corresponding manifolds, and show that the ergodicity of frame flows implies quantum ergodicity in an appropriate sense for those operators. Observables for the corresponding quantum systems are matrix-valued pseudodifferen-tial operators and therefore the system… (More)

- EMILY B. DRYDEN, ALEXANDER STROHMAIER
- 2005

We show that for compact orientable hyperbolic orbisurfaces, the Laplace spectrum determines the length spectrum as well as the number of singular points of a given order. Together with results of the first author in [1], this gives a full generalization of Huber's theorem to the setting of compact orientable hyperbolic orbisurfaces.