Alexander Steinbüchel

Learn More
An oleaginous hydrocarbon-degrading Rhodococcus opacus strain (PD630) was isolated from a soil sample. The cells were able to grow on a variety of substrates and to produce large amounts of three different types of intracellular inclusions during growth on alkanes, phenylalkanes, or non-hydrocarbon substrates. Electron microscopy revealed large numbers of(More)
The oxazine dye Nile blue A and its fluorescent oxazone form, Nile red, were used to develop a simple and highly sensitive staining method to detect poly(3-hydroxybutyric acid) and other polyhydroxyalkanoic acids (PHAs) directly in growing bacterial colonies. In contrast to previously described methods, these dyes were directly included in the medium at(More)
The H2-oxidizing lithoautotrophic bacterium Ralstonia eutropha H16 is a metabolically versatile organism capable of subsisting, in the absence of organic growth substrates, on H2 and CO2 as its sole sources of energy and carbon. R. eutropha H16 first attracted biotechnological interest nearly 50 years ago with the realization that the organism's ability to(More)
Eight mutants of Alcaligenes eutrophus defective in the intracellular accumulation of poly-beta-hydroxybutyric acid (PHB) were isolated after transposon Tn5 mutagenesis with the suicide vector pSUP5011. EcoRI fragments which harbor Tn5-mob were isolated from pHC79 cosmid gene banks. One of them, PPT1, was used as a probe to detect the intact(More)
To investigate the metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid (PHA) synthesis, we isolated mutants of Pseudomonas putida KT2440 deficient in this metabolic route. The gene phaG was cloned by phenotypic complementation of these mutants; it encoded a protein of 295 amino acids with a molecular mass of 33,876 Da, and the(More)
A 5.0-kbp genomic EcoRI restriction fragment which complemented a third subclass of polyhydroxyalkanoic acid (PHA)-leaky mutants of A. eutrophus that accumulated PHA at a lower rate than the wild type was cloned from Alcaligenes eutrophus H16. A 687-bp phaPAe gene on this fragment encoded a 24-kDa protein (M(r) = 23,963), which was referred to as the GA24(More)
Vanillin is one of the most important aromatic flavor compounds used in foods, beverages, perfumes, and pharmaceuticals and is produced on a scale of more than 10 thousand tons per year by the industry through chemical synthesis. Alternative biotechnology-based approaches for the production are based on bioconversion of lignin, phenolic stilbenes,(More)
Pseudomonas aeruginosa PAO and 15 other strains of this species synthesized a polyester with 3-hydroxydecanoate as the main constituent (55 to 76 mol%) if the cells were cultivated in the presence of gluconate and if the nitrogen source was exhausted; 3-hydroxyhexanoate, 3-hydroxyoctanoate, and 3-hydroxydodecanoate were minor constituents of the polymer.(More)
Triacylglycerols (TAG) are fatty acid triesters of glycerol; there are diverse types of TAG with different properties depending on their fatty acid composition. The occurrence of TAG as reserve compounds is widespread among eukaryotic organisms such as yeast, fungi, plants and animals, whereas occurrence of TAG in bacteria has only rarely been described.(More)
The gene loci ech, encoding enoyl-CoA hydratase/aldolase, and fcs, encoding an unusual feruloyl-CoA synthetase, which are involved in the bioconversion of ferulic acid to vanillin by the Gram-positive bacterium Amycolatopsis sp. strain HR167, were localized on a 4,000 bp PstI fragment (P40). The nucleotide sequence of P40 was determined, revealing open(More)