Alexander Shnirman

Alexey V. Ustinov1
Alexander Bilmes1
1Alexey V. Ustinov
1Alexander Bilmes
1Georg Weiss
Learn More
Low-capacitance Josephson junctions, where Cooper pairs tunnel coherently while Coulomb blockade effects allow the control of the total charge, provide physical realizations of quantum bits (qubits), with logical states differing by one Cooper-pair charge on an island. The single-and two-bit operations required for quantum computation can be performed by(More)
Recent progress with microfabricated quantum devices has revealed that an ubiquitous source of noise originates in tunneling material defects that give rise to a sparse bath of parasitic two-level systems (TLSs). For superconducting qubits, TLSs residing on electrode surfaces and in tunnel junctions account for a major part of decoherence and thus pose a(More)
Among the physical realizations of the elements required for quantum computation nano-scale electronic devices 15,2,12,10] are very promising. They can be easily integrated into electronic circuits and scaled up to large numbers of qubits. Here we describe qubits based on low-capacitance Josephson junctions. In these systems Coulomb blockade eeects allow(More)
  • 1