Learn More
The lymphocyte K+ channel Kv1.3 constitutes an attractive pharmacological target for the selective suppression of terminally differentiated effector memory T (TEM) cells in T cell-mediated autoimmune diseases, such as multiple sclerosis and type 1 diabetes. Unfortunately, none of the existing small-molecule Kv1.3 blockers is selective, and many of them,(More)
Even though the sense of touch is crucial for humans, most humanoid robots lack tactile sensing. While a large number of sensing technologies exist, it is not trivial to incorporate them into a robot. We have developed a compliant “skin” for humanoids that integrates a distributed pressure sensor based on capacitive technology. The skin is(More)
Instrinsically motivated robots are machines designed to operate for long periods of time, performing tasks for which they have not been programmed for. These robots make extensive use of explorative, often unstructured actions in search for opportunities to learn and to extract information from the environment. Research in this field faces challenges that(More)
In order to successfully perform object manipulation, humanoid robots must be equipped with tactile sensors. However, the limited space that is available in robotic fingers imposes severe design constraints. In [1] we presented a small prototype fingertip which incorporates a capacitive pressure system. This paper shows an improved version, which has been(More)
— In this paper we describe the hand of the hu-manoid iCub, an open source robotic platform funded by the European Commission. The principal design rationale was the necessity to supply the robot with sufficiently dexterous and sensorized hands in order to study complex skills such as manipulation. The final design has 9 actuators for each hand, 12 tactile(More)
BACKGROUND Human natural killer (NK) cells are the key contributors of innate immune response and the effector functions of these cells are enhanced by cytokines such as interleukine 2 (IL2). We utilized genome-wide transcriptional profiling to identify gene expression signatures and pathways in resting and IL2 activated NK cell isolated from peripheral(More)
— Tactile feedback is of crucial importance for object manipulation in unknown environments. In this paper we describe the design and realization of a fingertip which includes a capacitive pressure sensor with 12 sensitive zones. It is naturally shaped and its size is small enough so that it can be mounted on the fingers of the humanoid robot iCub. It also(More)
This paper presents an easy means to produce a 3-axis Hall effect-based skin sensor for robotic applications. It uses an off-the-shelf chip and is physically small and provides digital output. Furthermore, the sensor has a soft exterior for safe interactions with the environment; in particular it uses soft silicone with about an 8 mm thickness. Tests were(More)
This article describes the hardware design of the iCub humanoid robot. The iCub is an open-source humanoid robotic platform designed explicitly to support research in embodied cognition. This paper covers the mechanical and electronic design of the first release of the robot. A series upgrades developed for the second version of the robot (iCub2), which are(More)
PURPOSE To use magnetic resonance (MR) imaging and positron emission tomography (PET) dual detection of cardiac-grafted embryonic stem cells (ESCs) to examine (a) survival and proliferation of ESCs in normal and infarcted myocardium, (b) host macrophage versus grafted ESC contribution to serial MR imaging signal over time, and (c) cardiac function(More)