Learn More
The notion of a "plurifunctional" nucleolus is now well established. However, molecular mechanisms underlying the biological processes occurring within this nuclear domain remain only partially understood. As a first step in elucidating these mechanisms we have carried out a proteomic analysis to draw up a list of proteins present within nucleoli of HeLa(More)
Non-enzymatic glycation of proteins is a post-translational modification produced by a reaction between reducing sugars and amino groups located in lysine and arginine residues or in the N-terminal position. This modification plays a relevant role in medicine and food industry. In the clinical field, this undesired role is directly linked to blood glucose(More)
The diagnosis of Alzheimer's disease (AD), the most common form of dementia in the general population, usually relies upon the presence of typical clinical features and structural changes on brain magnetic resonance imaging. Over the last decade, a number of biological abnormalities have been reported in the cerebrospinal fluid (CSF) of AD patients, in(More)
Gas-phase fractionation (GPF) is an efficient and straightforward method to increase proteome coverage. In this report, optimal m/z ranges were calculated based on genomic complexity and experimental data. Then, theoretical precursor ion densities were calculated in silico from various organisms' genomes and found to corroborate the empirical selection of(More)
High throughput protein identification and quantification analysis based on mass spectrometry are fundamental steps in most proteomics projects. Here, we present EasyProt (available at http://easyprot.unige.ch), a new platform for mass spectrometry data processing, protein identification, quantification and unexpected post-translational modification(More)
Isobaric tagging, via TMT or iTRAQ, is widely used in quantitative proteomics. To date, tandem mass spectrometric analysis of isobarically-labeled peptides with hybrid ion trap-orbitrap (LTQ-OT) instruments has been mainly carried out with higher-energy C-trap dissociation (HCD) or pulsed q dissociation (PQD). HCD provides good fragmentation of the(More)
Proteomics studies typically aim to exhaustively detect peptides/proteins in a given biological sample. Over the past decade, the number of publications using proteomics methodologies has exploded. This was made possible due to the availability of high-quality genomic data and many technological advances in the fields of microfluidics and mass spectrometry.(More)
Hydrophobic proteins are difficult to analyze by two-dimensional electrophoresis (2-DE) because of their intrinsic tendency to self-aggregate during the first dimension (isoelectric focusing, IEF) or the equilibration steps. This aggregation renders their redissolution for the second dimension uncertain and results in the reduction of the number and(More)
Many regulatory proteins are homo-oligomeric and designing assays that measure self-assembly will provide novel approaches to study protein allostery and screen for novel small molecule modulators of protein interactions. We present an assay to begin to define the biochemical determinants that regulate dimerization of the cancer-associated oncoprotein AGR2.(More)
BACKGROUND To unravel molecular targets involved in glycopeptide resistance, three isogenic strains of Staphylococcus aureus with different susceptibility levels to vancomycin or teicoplanin were subjected to whole-genome microarray-based transcription and quantitative proteomic profiling. Quantitative proteomics performed on membrane extracts showed(More)