Alexander S. Mironov

Learn More
Thiamin and riboflavin are precursors of essential coenzymes-thiamin pyrophosphate (TPP) and flavin mononucleotide (FMN)/flavin adenine dinucleotide (FAD), respectively. In Bacillus spp, genes responsible for thiamin and riboflavin biosynthesis are organized in tightly controllable operons. Here, we demonstrate that the feedback regulation of riboflavin and(More)
Nitric oxide (NO) is an important signaling molecule in multicellular organisms. Most animals produce NO from L-arginine via a family of dedicated enzymes known as NO synthases (NOSes). A rare exception is the roundworm Caenorhabditis elegans, which lacks its own NOS. However, in its natural environment, C. elegans feeds on Bacilli that possess functional(More)
  • Alexandra A. Popova, Olga A. Koksharova, Valentina A. Lipasova, Julia V. Zaitseva, Olga A. Katkova-Zhukotskaya, Svetlana Iu. Eremina +3 others
  • 2014
In previous research, volatile organic compounds (VOCs) emitted by various bacteria into the chemosphere were suggested to play a significant role in the antagonistic interactions between microorganisms occupying the same ecological niche and between bacteria and target eukaryotes. Moreover, a number of volatiles released by bacteria were reported to(More)
The complete decipherment of the functions and interactions of the elements of the riboflavin biosynthesis operon (rib operon) of Bacillus subtilis are necessary for the development of superproducers of this important vitamin. The function of its terminal ribT gene has not been established to date. In this work, a search for homologs of the hypothetical(More)
Methyl methanesulfonate (MMS) is an alkylating agent commonly used in models of genotoxic stress. It methylates bases in DNA, but also leads to oxidative stress. The transcription factor Rpn4 protects yeast cells from toxic effect of MMS. Although Rpn4 is a major regulator of ubiquitin-proteasome system (UPS), a number of data points to its participation in(More)
The transcription start sites of two internal promoters, the P2 and P3 promoters, in the Bacillus subtilis riboflavin biosynthesis operon were identified by primer extension. Putative −35 and −10 sequences that are recognized by the vegetative δ70 subunit of RNA polymerase have been found upstream of the P2 and P3 transcription start sites. The relative(More)
Transcription elongation is interrupted when RNA polymerase encounters a damaged DNA template or DNA-associated proteins. The maintenance of efficient transcription and the integrity of the genetic material in the cell is achieved through different mechanisms of detecting and repairing DNA lesions and by overcoming roadblocks by RNA polymerase. Reparing(More)
Quinolone antibiotics inhibit DNA gyrase, but the induced degradation of chromosomal DNA is determined by a complex process of the joint action of quinolones and hydroxyl radical, OH’. In this study, we used inducible specific lux biosensors, i.e., Escherichia coli bacteria containing hybrid plasmids pColD’::lux, pSoxS’::lux, and pKatG’::lux, to quantify(More)
We studied the regulation of the Bacillus subtilis ypaA gene-encoding riboflavin-transporter by FMN riboswitch. Using translational fusions of the leader region of wild-type ypaA gene with the lacZ-reporter gene in the leader region we showed that in vivo ypaA gene expression decreased more than 10-fold in the presence of endogenous FMN. Introduction of two(More)
We studied the cytotoxicity of acadesine (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) for tumor and normal cells of various species and tissue origin. In tumor cells, acadesine triggered non-apoptotic death; the potency of the compound to normal cells was substantially lower. Acadesine was toxic for tumor cells with multidrug resistant phenotypes(More)