#### Filter Results:

- Full text PDF available (85)

#### Publication Year

2002

2017

- This year (8)
- Last 5 years (48)
- Last 10 years (76)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- Jacob D. Abernethy, Elad Hazan, Alexander Rakhlin
- COLT
- 2008

We introduce an efficient algorithm for the problem of online linear optimization in the bandit setting which achieves the optimal O∗( √ T ) regret. The setting is a natural generalization of the nonstochastic multi-armed bandit problem, and the existence of an efficient optimal algorithm has been posed as an open problem in a number of recent papers. We… (More)

- Alexander Rakhlin, Ohad Shamir, Karthik Sridharan
- ICML
- 2012

Stochastic gradient descent (SGD) is a simple and popular method to solve stochastic optimization problems which arise in machine learning. For strongly convex problems, its convergence rate was known to be O(log(T )/T ), by running SGD for T iterations and returning the average point. However, recent results showed that using a different algorithm, one can… (More)

We study the regret of optimal strategies for online convex optimization games. Using von Neumann’s minimax theorem, we show that the optimal regret in this adversarial setting is closely related to the behavior of the empirical minimization algorithm in a stochastic process setting: it is equal to the maximum, over joint distributions of the adversary’s… (More)

This thesis studies two key properties of learning algorithms: their generalization ability and their stability with respect to perturbations. To analyze these properties, we focus on concentration inequalities and tools from empirical process theory. We obtain theoretical results and demonstrate their applications to machine learning. First, we show how… (More)

- Peter L. Bartlett, Elad Hazan, Alexander Rakhlin
- NIPS
- 2007

We study the rates of growth of the regret in online convex optimization. First, we show that a simple extension of the algorithm of Hazan et al eliminates the need for a priori knowledge of the lower bound on the second derivatives of the observed functions. We then provide an algorithm, Adaptive Online Gradient Descent, which interpolates between the… (More)

A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a prediction x from a convex set, the environment plays a loss function f , and the learner’s long-term goal is to minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et al., when f is assumed to be strongly… (More)

- Alexander Rakhlin, Karthik Sridharan
- COLT
- 2013

We present methods for online linear optimization that take advantage of benign (as opposed to worst-case) sequences. Specifically if the sequence encountered by the learner is described well by a known “predictable process”, the algorithms presented enjoy tighter bounds as compared to the typical worst case bounds. Additionally, the methods achieve the… (More)

- Jacob D. Abernethy, Alexander Rakhlin
- 2009 Information Theory and Applications Workshop
- 2009

We provide a principled way of proving Õ(√T) high-probability guarantees for partial-information (bandit) problems over arbitrary convex decision sets. First, we prove a regret guarantee for the full-information problem in terms of “local” norms, both for entropy and self-concordant barrier regularization, unifying these methods.… (More)

- Jacob D. Abernethy, Elad Hazan, Alexander Rakhlin
- IEEE Transactions on Information Theory
- 2012

We study the problem of predicting individual sequences with linear loss with full and partial (or bandit) feed- back. Our main contribution is the first efficient algorithm for the problem of online linear optimization in the bandit setting which achieves the optimal Õ(√(T)) regret. In addition, for the full-information setting, we give a… (More)

- Alexander Rakhlin, Karthik Sridharan
- NIPS
- 2013

We provide several applications of Optimistic Mirror Descent, an online learning algorithm based on the idea of predictable sequences. First, we recover the Mirror Prox algorithm for offline optimization, prove an extension to Hölder-smooth functions, and apply the results to saddle-point type problems. Next, we prove that a version of Optimistic Mirror… (More)