Alexander P. Fields

Learn More
Anti-Brownian electrokinetic traps have been used to trap and study the free-solution dynamics of large protein complexes and long chains of DNA. Small molecules in solution have thus far proved too mobile to trap by any means. Here we explore the ultimate limits on trapping single molecules. We developed a feedback-based anti-Brownian electrokinetic trap(More)
The bending stiffness of double-stranded DNA (dsDNA) at high curvatures is fundamental to its biological activity, yet this regime has been difficult to probe experimentally, and literature results have not been consistent. We created a 'molecular vise' in which base-pairing interactions generated a compressive force on sub-persistence length segments of(More)
Microbial rhodopsins are an important class of light-activated transmembrane proteins whose function is typically studied on bulk samples. Herein, we apply photochromic fluorescence resonance energy transfer to investigate the dynamics of these proteins with sensitivity approaching the single-molecule limit. The brightness of a covalently linked organic(More)
Until recently, Brownian motion was seen as an immutable feature of small particles in room-temperature liquids. Molecules, viruses, organelles, and small cells jiggle incessantly due to countless collisions with thermally agitated molecules of solvent. Einstein showed in 1905 that this motion is intimately linked to the tendency of every system to relax(More)
It has recently become possible to trap individual fluorescent biomolecules in aqueous solution by using real-time tracking and active feedback to suppress Brownian motion. We propose areas of investigation in which anti-Brownian electrokinetic (ABEL) trapping of single molecules is likely to lead to significant new insights into biomolecular dynamics.
Single-molecule spectroscopy provides a wealth of information on the dynamics and interactions of complex biological molecules. Yet these measurements are extremely challenging, partly because Brownian motion prevents molecules in free solution from remaining stationary. Here we describe several techniques that our lab has developed for confining single(More)
Optical tracking of a fluorescent particle in solution faces fundamental constraints due to Brownian motion, diffraction, and photon shot noise. Background photons and imperfect tracking apparatus further degrade tracking precision. Here we use a model of particle motion to combine information from multiple time-points to improve the localization precision.(More)
  • 1