Alexander Noveen

Learn More
The mushroom body (MB) is a uniquely identifiable brain structure present in most arthropods. Functional studies have established its role in learning and memory. Here we describe the early embryonic origin of the four neuroblasts that give rise to the mushroom body and follow its morphogenesis through later embryonic stages. In the late embryo, axons of MB(More)
Induction of skin appendages involves a cascade of molecular events. The fibroblast growth factor (FGF) family of peptide growth factors is involved in cell proliferation and morphogenesis. We explored the role of the FGFs during skin appendage induction using developing chicken feather buds as a model. FGF-1, FGF-2, or FGF-4 was added directly to the(More)
The mechanism involved in the morphogenesis of skin appendages is a fundamental issue underlying the development and healing of skin. To identify molecules involved in the induction and growth of skin appendages, we studied the expression of two homeobox genes, Msx-1 and Msx-2, during embryonic chicken skin development. We found that i) both Msx-1 and Msx-2(More)
The molecular signaling of secondary induction is a fundamental process in organogenesis during embryonic development. To study the signal transduction pathways involved, we used developing chicken skin as a model and focused on the roles of intracellular signaling during feather morphogenesis. Protein kinase C (PKC) immunoreactivity increases in the whole(More)
We isolated genomic clones containing the mouse Hox 8 gene, a member of the msh gene family. We show that Hox 8 comprises two exons of approximately 600 and 691 bp separated by a 3.5-kb intron, and that it cosegregates with previously mapped markers in the distal region of mouse chromosome 13. In midgestation embryos, the Hox 8 gene produces transcripts of(More)
Classical histological studies have demonstrated the cellular organization of skin appendages and helped us appreciate the intricate structures and function of skin appendages. At this juncture, questions can be directed to determine how these cellular organizations are achieved. How do cells rearrange themselves to form the complex cyto-architecture of(More)
The Drosophila N-CAM homolog Fasciclin II (FasII) is expressed during the embryonic period in a subset of central neurons that pioneer the neuropile of the larval brain. Toward the end of embryogenesis, FasII expression in axon tracts diminishes but resumes from the late first larval instar in an increasingly complex pattern of axon tracts that join the(More)
The neuropile of the late embryonic Drosophila brain can be subdivided into a vertical component (cervical connective), a transverse component (supraesophageal commissure), and a horizontal component for which we propose the term protocerebral connective. The core of each neuropile component is formed by numerous axon fascicles, the trajectory of which(More)
Evidence is presented for the existence of a soluble heterotetramer containing the low and middle molecular weight neurofilament (NF) proteins, NF-L and NF-M, and one containing the low and high molecular weight proteins, NF-L and NF-H, and for their role in filament assembly. When a mixture of either pair of proteins was renatured in 2 M urea, 20 mM Tris,(More)
In Drosophila, it has been shown that protein kinase A and hedgehog have antagonistic actions during the formation of imaginal disks. In vertebrate skin, sonic hedgehog is expressed specifically in the feather bud epithelia. using an in vitro explant culture model we showed that dibutyryl cAMP, a protein kinase A (PKA) activator, suppresses the expression(More)