Learn More
The physiological complex of yeast cytochrome c peroxidase and iso-1-cytochrome c is a paradigm for biological electron transfer. Using paramagnetic NMR spectroscopy, we have determined the conformation of the protein complex in solution, which is shown to be very similar to that observed in the crystal structure [Pelletier H, Kraut J (1992) Science(More)
Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We use paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize the ensemble of encounter orientations in the short-lived electron(More)
Cytochrome c (Cc) and cytochrome c peroxidase (CcP) form a physiological complex in the inter-membrane space of yeast mitochondria, where CcP reduces hydrogen peroxide to water using the electrons provided by ferrous Cc. The Cc-CcP system has been a popular choice of study of interprotein biological electron transfer (ET) and in understanding dynamics(More)
The interaction of bovine microsomal ferricytochrome b5 with yeast iso-1-ferri and ferrocytochrome c has been investigated using heteronuclear NMR techniques. Chemical-shift perturbations for 1H and 15N nuclei of both cytochromes, arising from the interactions with the unlabeled partner proteins, were used for mapping the interacting surfaces on both(More)
Recent experimental studies have confirmed a long-held view that protein complex formation proceeds via a short-lived encounter state. The population of this transient intermediate, stabilized mainly by long-range electrostatic interactions, varies among different complexes. Here we show that the occupancy of the encounter state can be modulated across a(More)
Transient protein interactions mediate many vital cellular processes such as signal transduction or intermolecular electron transfer. However, due to difficulties associated with their structural characterization, little is known about the principles governing recognition and binding in weak transient protein complexes. In particular, it has not been well(More)
Cytochrome c (Cc) is a soluble electron carrier protein, transferring reducing equivalents between Cc reductase and Cc oxidase in eukaryotes. In this work, we assessed the structural differences between reduced and oxidized Cc in solution by paramagnetic NMR spectroscopy. First, we have obtained nearly-complete backbone NMR resonance assignments for(More)
Antitoxins from prokaryotic type II toxin-antitoxin modules are characterized by a high degree of intrinsic disorder. The description of such highly flexible proteins is challenging because they cannot be represented by a single structure. Here, we present a combination of SAXS and NMR data to describe the conformational ensemble of the PaaA2 antitoxin from(More)
Lying at the heart of many vital cellular processes such as photosynthesis and respiration, biological electron transfer (ET) is mediated by transient interactions among proteins that recognize multiple binding partners. Accurate description of the ET complexes - necessary for a comprehensive understanding of the cellular signaling and metabolism - is(More)
Uropathogenic Escherichia coli cause urinary tract infections by adhering to mannosylated receptors on the human urothelium via the carbohydrate-binding domain of the FimH adhesin (FimHL). Numerous α-d-mannopyranosides, including α-d-heptyl mannose (HM), inhibit this process by interacting with FimHL. To establish the molecular basis of the high-affinity HM(More)