Alexander N. Malyshev

Learn More
SUMMARY A fast algorithm for solving systems of linear equations with banded Toeplitz matrices is studied. An important step in the algorithm is a novel method for the spectral factorization of the generating function associated with the Toeplitz matrix. The spectral factorization is extracted from the right deflating sub-spaces corresponding to the(More)
Peters and Wilkinson 4] state that \it is well known that Gauss-Jordan is stable" for a diagonally dominant matrix, but a proof does not seem to have been published 3]. The present note lls this gap. Gauss-Jordan elimination is backward stable for matrices diagonally dominant by rows and not backward stable for matrices diagonally dominant by columns. In(More)
Fix a totally real number field F of degree at least 2. Under the assumptions of the generalized Riemann hypothesis and Artin's conjecture on the entirety of Artin L-functions, we derive an upper bound (in terms of the discriminant) on the class number of any CM number field with maximal real subfield F. This bound is a refinement of an earlier bound(More)
  • 1