Alexander Mortl

Learn More
Since the strict separation of working spaces of humans and robots has experienced a softening due to recent robotics research achievements, close interaction of humans and robots comes rapidly into reach. In this context, physical human– robot interaction raises a number of questions regarding a desired intuitive robot behavior. The continuous bilateral(More)
— Physical cooperation with humans greatly enhances the capabilities of robotic systems when leaving standardized industrial settings. Our novel cognition-enabled control framework presented in this paper enables a robotic assistant to enrich its own experience by acquisition of human task knowledge during joint manipulation. Our robot incrementally learns(More)
— Physical cooperation with humans greatly enhances the capabilities of robotic systems when leaving standardized industrial settings. In particular, manipulation of bulky objects in narrow environments requires cooperating partners. Actuation redundancies arising in joint manipulation impose the question of load sharing among the interacting partners. In(More)
Human interaction partners tend to synchronize their movements during repetitive actions such as walking. Research of inter-human coordination in purely rhythmic action tasks reveals that the observed patterns of interaction are dominated by synchronization effects. Initiated by our finding that human dyads synchronize their arm movements even in a(More)
Interactive behavior among humans is governed by the dynamics of movement synchronization in a variety of repetitive tasks. This requires the interaction partners to perform for example rhythmic limb swinging or even goal-directed arm movements. Inspired by that essential feature of human interaction, we present a novel concept and design methodology to(More)
Unintentional movement synchronization is often emerging between interacting humans. In the present study, we investigate the extent to which the incongruence of movement trajectories has an influence on unintentional dyadic movement synchronization. During a target-directed tapping task, a participant repetitively moved between two targets in front of(More)
Interpersonal movement synchronization is a phenomenon that does not only increase the predictability of movements; it also increases rapport among people. In this line, synchronization might enhance human-robot interaction. An experiment is presented which explores to what extend a human synchronizes own movements to a non-adaptive robot during a(More)
— This paper investigates goal-directed cooperative object swinging as a novel physical human-robot interaction scenario. We develop an energy-based control concept, which enables a robot to cooperate with a human in a goal-directed swing-up task. The robot can be assigned to be a leader or an actively contributing follower. We conduct a virtual reality(More)
Actuated car doors are a promising way to increase the convenience of access to cars. In this paper, an advanced door concept which can easily be integrated into conventional car doors is presented. Using a linear, non-backdrivable actuator and various sensors, both automatic and manual door operations can be realized. The principal part is the realization(More)