Learn More
An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique(More)
Enterohemorrhagic Escherichia coli (EHEC) strains cause diarrhea and hemolytic uremic syndrome resulting from toxin-mediated microvascular endothelial injury. EHEC hemolysin (EHEC-Hly), a member of the RTX (repeats-in-toxin) family, is an EHEC virulence factor of increasingly recognized importance. The toxin exists as free EHEC-Hly and as EHEC-Hly(More)
BACKGROUND In an ongoing outbreak of haemolytic uraemic syndrome and bloody diarrhoea caused by a virulent Escherichia coli strain O104:H4 in Germany (with some cases elsewhere in Europe and North America), 810 cases of the syndrome and 39 deaths have occurred since the beginning of May, 2011. We analysed virulence profiles and relevant phenotypes of(More)
Multilocus sequence typing of 169 non-O157 enterohemorrhagic Escherichia coli (EHEC) isolated from patients with hemolytic uremic syndrome (HUS) demonstrated 29 different sequence types (STs); 78.1% of these strains clustered in 5 STs. From all STs and serotypes identified, we established a reference panel of EHEC associated with HUS (HUSEC collection).
Escherichia coli serogroup O26 consists of enterohemorrhagic E. coli (EHEC) and atypical enteropathogenic E. coli (aEPEC). The former produces Shiga toxins (Stx), major determinants of EHEC pathogenicity, encoded by bacteriophages; the latter is Stx negative. We have isolated EHEC O26 from patient stools early in illness and aEPEC O26 from stools later in(More)
The highly virulent Escherichia coli O104:H4 that caused the large 2011 outbreak of diarrhoea and haemolytic uraemic syndrome secretes blended virulence factors of enterohaemorrhagic and enteroaggregative E. coli, but their secretion pathways are unknown. We demonstrate that the outbreak strain releases a cocktail of virulence factors via outer membrane(More)
The zoonotic disease tularemia is caused by the bacterium Francisella tularensis. This pathogen is considered as a category A select agent with potential to be misused in bioterrorism. Molecular typing based on DNA-sequence like canSNP-typing or MLVA has become the accepted standard for this organism. Due to the organism's highly clonal nature, the current(More)
Enterohemorrhagic Escherichia coli (EHEC) O26:H11/H⁻ is the predominant non-O157 EHEC serotype among patients with diarrhea, bloody diarrhea, and hemolytic uremic syndrome (HUS) worldwide. To elucidate their phylogeny and association between their phylogenetic background and clinical outcome of the infection, we investigated 120 EHEC O26:H11/H⁻ strains(More)
BACKGROUND For typing of Staphylococcus aureus, DNA sequencing of the repeat region of the protein A (spa) gene is a well established discriminatory method for outbreak investigations. Recently, it was hypothesized that this region also reflects long-term epidemiology. However, no automated and objective algorithm existed to cluster different repeat(More)
Pigs, cattle and poultry are colonized with MRSA and the zoonotic transmission of such MRSA to humans via direct animal contact, environmental contaminations or meat are a matter of concern. Livestock-associated (LA) MRSA are mostly belonging to clonal complex (CC) 398 as defined by multilocus sequence typing. However, MRSA of other clonal lineages(More)