Learn More
MicroRNAs (miRNAs) are crucial for normal embryonic stem (ES) cell self-renewal and cellular differentiation, but how miRNA gene expression is controlled by the key transcriptional regulators of ES cells has not been established. We describe here the transcriptional regulatory circuitry of ES cells that incorporates protein-coding and miRNA genes based on(More)
Foxp3+CD4+CD25+ regulatory T (T(reg)) cells are essential for the prevention of autoimmunity. T(reg) cells have an attenuated cytokine response to T-cell receptor stimulation, and can suppress the proliferation and effector function of neighbouring T cells. The forkhead transcription factor Foxp3 (forkhead box P3) is selectively expressed in T(reg) cells,(More)
Genome-wide association studies have identified loci underlying human diseases, but the causal nucleotide changes and mechanisms remain largely unknown. Here we developed a fine-mapping algorithm to identify candidate causal variants for 21 autoimmune diseases from genotyping data. We integrated these predictions with transcription and cis-regulatory(More)
Alexander Marson,1,2,5 Ruth Foreman,1,2,5 Brett Chevalier,1,5 Steve Bilodeau,1 Michael Kahn,3,4 Richard A. Young,1,2,* and Rudolf Jaenisch1,2,* 1Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA 2Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3Institute for Stem Cell and Regenerative Medicine(More)
Cyclin D1 belongs to the core cell cycle machinery, and it is frequently overexpressed in human cancers. The full repertoire of cyclin D1 functions in normal development and oncogenesis is unclear at present. Here we developed Flag- and haemagglutinin-tagged cyclin D1 knock-in mouse strains that allowed a high-throughput mass spectrometry approach to search(More)
T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently "knock out" genes and "knock in" targeted genome modifications to modulate T-cell function and correct(More)
We identified three retinoid-related orphan receptor gamma t (RORγt)-specific inhibitors that suppress T helper 17 (Th17) cell responses, including Th17-cell-mediated autoimmune disease. We systemically characterized RORγt binding in the presence and absence of drugs with corresponding whole-genome transcriptome sequencing. RORγt acts as a direct activator(More)
We have studied three members of a family (mother and two siblings) where the mother and father were first cousins and who presented a history of progressive mental deterioration, hyperkinetic extrapyramidal disorders, and epileptic seizures. They underwent the following examinations: cupremia, cupruria, and level of ceruloplasmin, genetic analysis for(More)
Nuclear foci containing the promyelocytic leukemia protein (PML bodies), which occur in most cells, play a role in tumor suppression. Here, we demonstrate that CHFR, a mitotic checkpoint protein frequently inactivated in human cancers, is a dynamic component of PML bodies. Intermolecular fluorescence resonance energy transfer analysis identified a distinct(More)
Regulatory T cells (Treg cells) are required for immune homeostasis. Chromatin remodeling is essential for establishing diverse cellular identities, but how the epigenetic program in Treg cells is maintained throughout the dynamic activation process remains unclear. Here we have shown that CD28 co-stimulation, an extracellular cue intrinsically required for(More)