Alexander M. Smondyrev

Learn More
We introduce PHASE, a highly flexible system for common pharmacophore identification and assessment, 3D QSAR model development, and 3D database creation and searching. The primary workflows and tasks supported by PHASE are described, and details of the underlying scientific methodologies are provided. Using results from previously published investigations,(More)
By using molecular dynamics simulation technique we studied the changes occurring in membranes constructed of dipalmitoylphosphatidylcholine (DPPC) and cholesterol at 8:1 and 1:1 ratios. We tested two different initial arrangements of cholesterol molecules for a 1:1 ratio. The main difference between two initial structures is the average number of(More)
Bacteriorhodopsin is the smallest autonomous light-driven proton pump. Proposals as to how it achieves the directionality of its trans-membrane proton transport fall into two categories: accessibility-switch models in which proton transfer pathways in different parts of the molecule are opened and closed during the photocycle, and affinity-switch models,(More)
Nonequilibrium molecular dynamics (NEMD) computer simulations are used to calculated the bulk modulus for a dimyristoylphosphatidylcholine bilayer. A methodology is developed whereby NEMD can be effectively used to calculate material properties for complex systems that undergo long time-scale conformational changes. It is found that the bulk modulus upon(More)
Phase-ordering dynamics in nematic liquid crystals has been the subject of much active investigation in recent years in theory, experiments, and simulations. With a rapid quench from the isotropic to nematic phase, a large number of topological defects are formed and dominate the subsequent equilibration process. Here we present the results of a molecular(More)
Five molecular dynamics computer simulations were performed on different phospholipid:sterol membrane systems in order to study the influence of sterol structure on membrane properties. Three of these simulated bilayer systems were composed of a 1:8 sterol:phospholipid ratio, each of which employed one of the sterol molecules: cholesterol, ergosterol, and(More)
The structural and dynamical properties of a hydrated proton near the surface of DMPC membrane were studied using a molecular dynamics simulation. The proton transport between water molecules was modeled using the second generation multistate empirical valence bond model. The proton diffusion was found to be inhibited at the membrane surface. The potential(More)