Learn More
Metaphors are fundamental to creative thought and expression. Newly coined metaphors regularly infiltrate our collective vocabulary and gradually become familiar, but it is unclear how this shift from novel to conventionalized meaning happens in the brain. We investigated the neural career of metaphors in a functional magnetic resonance imaging study using(More)
Metaphors are a fundamental aspect of human cognition. The major neuropsychological hypothesis that metaphoric processing relies primarily on the right hemisphere is not confirmed consistently. We propose ways to advance our understanding of the neuropsychology of metaphor that go beyond simple laterality. Neuropsychological studies need to more carefully(More)
Despite the ubiquity and importance of metaphor in thought and communication, its neural mediation remains elusive. We suggest that this uncertainty reflects, in part, stimuli that have not been designed with recent conceptual frameworks in mind or that have been hampered by inadvertent differences between metaphoric and literal conditions. In this article,(More)
Space, time, and causality provide a natural structure for organizing our experience. These abstract categories allow us to think relationally in the most basic sense; understanding simple events requires one to represent the spatial relations among objects, the relative durations of actions or movements, and the links between causes and effects. The(More)
The ability to perceive causality is a central human ability constructed from elemental spatial and temporal information present in the environment. Although the nature of causality has captivated philosophers and scientists since antiquity, the neural correlates of causality remain poorly understood. In the present study, we used functional magnetic(More)
Schemas are abstract nonverbal representations that parsimoniously depict spatial relations. Despite their ubiquitous use in maps and diagrams, little is known about their neural instantiation. We sought to determine the extent to which schematic representations are neurally distinguished from language on the one hand, and from rich perceptual(More)
Is time an embodied concept? People often talk and think about temporal concepts in terms of space. This observation, along with linguistic and experimental behavioral data documenting a close conceptual relation between space and time, is often interpreted as evidence that temporal concepts are embodied. However, there is little neural data supporting the(More)
Prepositions combine with nouns flexibly when describing concrete locative relations (e.g. at/on/in the school) but are rigidly prescribed when paired with abstract concepts (e.g. at risk; on Wednesday; in trouble). In the former case they do linguistic work based on their discrete semantic qualities, and in the latter they appear to serve a primarily(More)
Distinguishing between a fair and unfair tackle in soccer can be difficult. For referees, choosing to call a foul often requires a decision despite some level of ambiguity. We were interested in whether a well documented perceptual-motor bias associated with reading direction influenced foul judgments. Prior studies have shown that readers of left-to-right(More)
Maps, graphs, and diagrams use simplified graphic forms, like lines and blobs, to represent basic spatial relations, like boundaries and enclosures. A schema is an iconic representation where perceptual detail has been abstracted away from reality in order to provide a more flexible structure for cognition. Unlike truly symbolic representations of spatial(More)