Alexander Konson

Learn More
Upon stimulation, many proteins translocate into the nucleus in order to regulate a variety of cellular processes. The mechanism underlying the translocation is not clear since many of these proteins lack a canonical nuclear localization signal (NLS). We searched for an alternative mechanism in extracellular signal-regulated kinase (ERK)-2 and identified a(More)
Pigment epithelium-derived factor (PEDF) is an endogenous inhibitor of angiogenesis and a promising anticancer agent capable of suppressing solid tumor growth in animal cancer models. We have previously shown that PEDF can be phosphorylated and that distinct phosphorylation states of this factor differentially regulate its physiologic function. Here, we(More)
Pigment epithelium-derived factor (PEDF) is a potent endogenous inhibitor of angiogenesis and a promising anticancer agent. We have previously shown that PEDF can be phosphorylated and that distinct phosphorylations differentially regulate its physiological functions. We also demonstrated that triple phosphomimetic mutant (EEE-PEDF), has significantly(More)
Cancer cells preferentially use glycolysis rather than oxidative phosphorylation for their rapid growth. They consume large amount of glucose to produce lactate even when oxygen is abundant, a phenomenon known as the Warburg effect. This metabolic change originates from a shift in the expression of alternative spliced isoforms of the glycolytic enzyme(More)
  • 1