Learn More
The aromatic amine carcinogen 2-aminofluorene (AF) forms covalent adducts with DNA, predominantly with guanine at the C8 position. Such lesions are bypassed by Y-family polymerases such as Dpo4 via error-free and error-prone mechanisms. We show that Dpo4 catalyzes elongation from a correct 3'-terminal cytosine opposite [AF]G in a nonrepetitive template(More)
Benzo[a]pyrene (B[a]P), a known environmental pollutant and tobacco smoke carcinogen, is metabolically activated to highly tumorigenic B[a]P diol epoxide derivatives that predominantly form N(2)-guanine adducts in cellular DNA. Although nucleotide excision repair (NER) is an important cellular defense mechanism, the molecular basis of recognition of these(More)
The mechanism of decomposition of peroxynitrite (OONO(-)) in aqueous sodium phosphate buffer solution at neutral pH was investigated. The OONO(-) was synthesized by directly reacting nitric oxide with superoxide anion at pH 13. The hypothesis was explored that OONO(-), after protonation at pH 7.0 to HOONO, decomposes into (1)O(2) and HNO according to a(More)
Previous studies indicated that DNA adducts formed by the carcinogenic diol epoxide 7r,8t-dihydroxy-9t,10t-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) can increase the affinity of the transcription factor Sp1 for DNA sequences that are not normally specific binding sites. Whether adducts that form in the normal binding site, the GC box sequence, increase(More)
The influence of DNA base sequence context on the removal of a bulky benzo[a]pyrene diol epoxide-guanine adduct, (+)-trans-B[a]P-N2-dG (G*), by UvrABC nuclease from the thermophilic organism Bacillus caldotenax was investigated. The lesion was flanked by either T or C in otherwise identical complementary 43-mer duplexes (TG*T or CG*C, respectively). It was(More)
The molecular basis of resistance to nucleotide excision repair (NER) of certain bulky DNA lesions is poorly understood. To address this issue, we have studied NER in human HeLa cell extracts of two topologically distinct lesions, one derived from benzo[a]pyrene (10R-(+)-cis-anti-B[a]P-N(2)-dG), and one from the food mutagen(More)
The combined action of oxidative stress and genotoxic polycyclic aromatic hydrocarbons derivatives can lead to cluster-type DNA damage that includes both a modified nucleotide and a bulky lesion. As an example, we investigated the possibility of repair of an AP site located opposite a minor groove-positioned (+)-trans-BPDE-dG or a base-displaced(More)
DNA damage caused by the binding of the tumorigen 7R,8S-diol 9S,10R-epoxide (B[a]PDE), a metabolite of bezo[a]pyrene, to guanine in CpG dinucleotide sequences could affect DNA methylation and, thus, represent a potential epigenetic mechanism of chemical carcinogenesis. In this work, we investigated the impact of stereoisomeric (+)- and(More)
Several recently discovered human DNA polymerases are associated with translesion synthesis past DNA adducts. These include human DNA polymerase kappa (pol kappa), a homologue of Escherichia coli pol IV, which enhances the frequency of spontaneous mutation. Using a truncated form of pol kappa (pol kappa Delta C), translesion synthesis past dG-(+)- or(More)
DNA polymerase nu (POLN or pol nu) is a newly discovered A family polymerase that generates a high error rate when incorporating nucleotides opposite dG; its translesion DNA synthesis (TLS) capability has only been demonstrated for high fidelity replication bypass of thymine glycol lesions. In the current investigation, we describe a novel TLS substrate(More)