#### Filter Results:

- Full text PDF available (256)

#### Publication Year

1988

2017

- This year (13)
- Last 5 years (100)
- Last 10 years (166)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Data Set Used

#### Key Phrases

Learn More

- Bernhard Schölkopf, Alexander J. Smola, Klaus-Robert Müller
- Neural Computation
- 1998

A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map—for instance, the space of all possible five-pixel products in 16 × 16 images. We give… (More)

- Alexander J. Smola, Bernhard Schölkopf
- Statistics and Computing
- 2004

In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications… (More)

- Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alexander J. Smola, Robert C. Williamson
- Neural Computation
- 2001

Suppose you are given some data set drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S equals some a priori specified value between 0 and 1. We propose a method to approach this problem by trying to estimate a function f… (More)

- Bernhard Schölkopf, Alexander J. Smola, Robert C. Williamson, Peter L. Bartlett
- Neural Computation
- 2000

We describe a new class of Support Vector algorithms for regression and classiication. In these algorithms, a parameter lets one eectively control the number of Support Vectors. While this can be useful in its own right, the parametrization has the additional beneet of enabling us to eliminate one of the other free parameters of the algorithm: the accuracy… (More)

A new regression technique based on Vapnik's concept of support vectors is introduced. We compare support vector regression (SVR) with a committee regression technique (bagging) based on regression trees and ridge regression done in feature space. On the basis of these experiments, it is expected that SVR will have advantages in high dimensionality space… (More)

The Support Vector (SV) method was recently proposed for estimating regressions, constructing multidimensional splines, and solving linear operator equations [Vapnik, 1995]. In this presentation we report results of applying the SV method to these problems.

- Bernhard Schölkopf, Sebastian Mika, +4 authors Alexander J. Smola
- IEEE Trans. Neural Networks
- 1999

This paper collects some ideas targeted at advancing our understanding of the feature spaces associated with support vector (SV) kernel functions. We first discuss the geometry of feature space. In particular, we review what is known about the shape of the image of input space under the feature space map, and how this influences the capacity of SV methods.… (More)

A new method for performing a nonlinear form of Principal Component Analysis is proposed. By the use of integral operator kernel functions, one can eeciently compute principal components in highh dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible dpixel products in images. We give the derivation… (More)

- Jyrki Kivinen, Alexander J. Smola, Robert C. Williamson
- IEEE Transactions on Signal Processing
- 2001

Kernel-based algorithms such as support vector machines have achieved considerable success in various problems in batch setting, where all of the training data is available in advance. Support vector machines combine the so-called kernel trick with the large margin idea. There has been little use of these methods in an online setting suitable for real-time… (More)