Learn More
The thermal conductivity of tetrahydrofuran hydrate has been measured in the temperature region 2-220 K by the steady-state potentiometric method. The temperature dependence of the thermal conductivity exhibits behavior typical of amorphous substances. It is shown that above 100 K the mean free path of the phonons is considerably smaller than the lattice(More)
We investigated through noncommercial calorimetry and elastoacoustic Brillouin experiments the phase diagram of n-butanol and measured the specific heat and the thermal conductivity in a wide low-temperature range for its three different states, namely, glass, crystal, and the so-called "glacial" states. The main aim of the work was to shed light on the(More)
The thermal conductivity κ and heat capacity per unit volume ρCp of triphenyl phosphite (TPP) were measured under different pressure and temperature conditions, and with time during the sluggish liquid to glacial state transformation at temperatures about 15 K above the glass transition temperature. As the transformation slowly proceeds during several(More)
The thermal conductivity, specific heat, and specific volume of the orientational glass former 1,1,2-trichloro-1,2,2-trifluoroethane (CCl2F-CClF2, F-113) have been measured under equilibrium pressure within the low-temperature range, showing thermodynamic anomalies at ca. 120, 72, and 20 K. The results are discussed together with those pertaining to the(More)
The heat capacity and thermal conductivity of the monoclinic and the fully ordered orthorhombic phases of 2-adamantanone (C10H14O) have been measured for temperatures between 2 and 150 K. The heat capacities for both phases are shown to be strikingly close regardless of the site disorder present in the monoclinic crystal which arises from the occupancy of(More)
We present a dynamic and thermodynamic study of the orientational glass former Freon 113 (1,1,2-trichloro-1,2,2-trifluoroethane, CCl_{2}F-CClF_{2}) in order to analyze its kinetic and thermodynamic fragilities. Freon 113 displays internal molecular degrees of freedom that promote a complex energy landscape. Experimental specific heat and its microscopic(More)
  • 1