Alexander I. Chernov

Learn More
Controlling chirality in growth of single-walled carbon nanotubes (SWNTs) is important for exploiting their practical applications. For long it has been conceptually conceived that the structural control of SWNTs is potentially achievable by fabricating nanoparticle catalysts with proper structures on crystalline substrates via epitaxial growth techniques.(More)
We report a ring-cavity thulium fiber laser mode locked with a single-wall carbon nanotube absorber used in transmission. A carboxymethyl cellulose polymer film with incorporated carbon nanotubes synthesized by the arc discharge method has an absorption coinciding with in the amplification bandwidth of a Tm-doped fiber. This laser is pumped by an erbium(More)
We have developed a magnesia (MgO)-supported iron-copper (FeCu) catalyst to accomplish the growth of single-walled carbon nanotubes (SWNTs) using carbon monoxide (CO) as the carbon source at ambient pressure. The FeCu catalyst system facilitates the growth of small-diameter SWNTs with a narrow diameter distribution. UV-vis-NIR optical absorption spectra and(More)
Pump relative intensity noise (RIN) has been recognized as a major source of noise in mode-locked lasers. The coupling of RIN from the pump to the output of a passively mode-locked fiber laser (PMFL) is systematically investigated using a pump modulation technique. It is found that the linear RIN coupling ratio from pump to PMFL is decreased with an(More)
A self-starting passively mode-locked fiber laser with a carbon nanotube-based saturable absorber and a fiber-based bandpass filter (BPF) is proposed. Incorporation of a BPF into the cavity leads to a great reduction of its timing jitter from 84.8 to 29.1 fs (10 Hz-3 MHz). This happens because the filtering effect can weaken the fluctuation of the central(More)
SiO(2) supported cobalt (Co) catalyst could be partially reduced and anchored by unreduced Co ions during a carbon monoxide (CO) chemical vapor deposition (CVD) process. This resulted in the formation of sub-nanometre metallic Co clusters catalyzing the growth of single-walled carbon nanotubes (SWNTs) with a narrow diameter distribution.
We report the photoluminescence (PL) from graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWCNTs). New PL spectral features originating from GNRs have been detected in the visible spectral range. PL peaks from GNRs have resonant character, and their positions depend on the ribbon geometrical structure in accordance with the(More)
In most of the previous studies of the spin wave optical generation in magnetic dielectrics, the backward volume spin waves were excited. Here we modified the parameters of the circularly polarized optical pump beams emitted by femtosecond laser to reveal surface spin waves in bismuth iron garnet thin film. Beams that are larger than 10 μm in diameter(More)
Single-walled carbon nanotubes (SWCNTs) are being widely investigated as saturable absorbers for initiating and maintaining mode-locking [1-3]. Among their advantages are low fabrication cost, a high damage threshold, sub-picosecond recovery times and a wide spectral range (1.0–2.5 µm). All mode-locked fibre laser systems based on SWCNT(More)
Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional(More)