Alexander Hasselhuhn

  • Citations Per Year
Learn More
A big class of Feynman integrals, in particular, the coefficients of their Laurent series expansion w.r.t. the dimension parameter ε can be transformed to multi-sums over hypergeometric terms and harmonic sums. In this article, we present a general summation method based on difference fields that simplifies these multi–sums by transforming them from inside(More)
J. Ablinger1, A. Behring2, J. Blümlein†2, A. De Freitas2, A. Hasselhuhn3, A. von Manteuffel4, C.G. Raab1,5, M. Round1,2, C. Schneider1, and F. Wißbrock1,2,6 1 Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A–4040, Linz, Austria 2 Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen,(More)
The O(αsnfT 2 FCA,F ) terms to the massive gluonic operator matrix elements are calculated for general values of the Mellin variable N using a new summation technique. These twist-2 matrix elements occur as transition functions in the variable flavor number scheme at NNLO. The calculation uses sum-representations in generalized hypergeometric series turning(More)
  • 1