Alexander H. J. Wittenberg

Learn More
The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited(More)
Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these(More)
Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural(More)
Sequencing projects using a clone-by-clone approach require the availability of a robust physical map. The SNaPshot technology, based on pair-wise comparisons of restriction fragments sizes, has been used recently to build the first physical map of a wheat chromosome and to complete the maize physical map. However, restriction fragments sizes shared(More)
UNLABELLED Next-generation sequencing (NGS) technologies have increased the scalability, speed, and resolution of genomic sequencing and, thus, have revolutionized genomic studies. However, eukaryotic genome sequencing initiatives typically yield considerably fragmented genome assemblies. Here, we assessed various state-of-the-art sequencing and assembly(More)
2 2 Genomic plasticity enables adaptation to changing environments, which is especially relevant 2 3 for pathogens that engage in arms races with their hosts. In many pathogens, genes 2 4 mediating aggressiveness cluster in highly variable, transposon-rich, physically distinct 2 5 genomic compartments. However, understanding of the evolution of these(More)
Colletotrichum higginsianum is an ascomycete fungus causing anthracnose disease on numerous cultivated plants in the family Brassicaceae, as well as the model plant Arabidopsis thaliana We report an assembly of the nuclear genome and gene annotation of this pathogen, which was obtained using a combination of PacBio long-read sequencing and optical mapping.
  • 1