Alexander Gatto

Learn More
The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether(More)
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the(More)
We evaluated whether the addition of delayed phase imaging (DPI) gadobenate dimeglumine-enhanced MRI to dynamic postcontrast imaging improves the characterization of small hepatocellular carcinoma (HCC) and the differentiation between HCC, high grade dysplastic nodules (HGDN), and low grade dysplastic nodules (LGDN). Twenty-five cirrhotic patients with 30(More)
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient(More)
Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10^{-23}/sqrt[Hz] at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first(More)
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the(More)
The purpose of this paper is to prove some classical estimates for fractional derivatives of functions defined on a Coifman-Weiss space of homogeneous type. In particular the Product Rule and Chain Rule estimates in [KP] and [CW]. The fractional calculus of M. Riesz was extended to these spaces in [GSV]. Our main tools are fractional difference quotients(More)
On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational(More)
In contrast to traditional binocular or multi-view stereo approaches, the adequately sampled space of observations in light-field imaging allows, to obtain dense and high quality depth maps. It also extends capabilities beyond those of traditional methods. Previously, constant intensity has been assumed for estimating disparity of orientation in most(More)