Alexander G Obukhov

Learn More
Eukaryotic cells respond to many hormones and neurotransmitters with increased activity of the enzyme phospholipase C and a subsequent rise in the concentration of intracellular free calcium ([Ca2+]i). The increase in [Ca2+]i occurs as a result of the release of Ca2+ from intracellular stores and an influx of Ca2+ through the plasma membrane; this influx of(More)
Mammalian transient receptor potential channels (TRPCs) form a family of Ca(2+)-permeable cation channels currently consisting of seven members, TRPC1-TRPC7. These channels have been proposed to be molecular correlates for capacitative Ca(2+) entry channels. There are only a few studies on the regulation and properties of the subfamily consisting of TRPC4(More)
Depletion of intracellular calcium stores generates a signal that activates Ca2+-permeable channels in the plasma membrane. We have identified a human cDNA, TRPC1A, from a human fetal brain cDNA library. TRPC1A is homologous to the cation channels trp and trpl in Drosophila and is a splice variant of the recently identified cDNA Htrp-1. Expression of TRPC1A(More)
Single channels activated by externally applied ATP were investigated in cultured sensory neurons from nodosal and spinal ganglia of rat using patch clamp and concentration clamp methods. Mean conductance of single ATP-activated channels was 17 pS when measured at a holding potential of -75 mV in saline containing 3 mM Ca2+ and 1 mM Mg2+. Sublevels of(More)
TRPC3 (or Htrp3) is a human member of the trp family of Ca2+-permeable cation channels. Since expression of TRPC3 cDNA results in markedly enhanced Ca2+ influx in response to stimulation of membrane receptors linked to phospholipase C (Zhu, X., J. Meisheng, M. Peyton, G. Bouley, R. Hurst, E. Stefani, and L. Birnbaumer. 1996. Cell. 85:661-671), we tested(More)
TRPC1-7 proteins are members of a family of mammalian non-specific cation channels that mediate receptor-operated, phospholipase Cbeta/Cgamma dependent Ca(2+) influx in various cell types. TRPC4 and TRPC5 form a subfamily within TRPCs. Uniquely in the TRPC family, these channels possess a C-terminal "VTTRL" motif that binds to PDZ-domains of the scaffolding(More)
AIMS Stenting attenuates restenosis, but accelerated coronary artery disease (CAD) adjacent to the stent (peri-stent CAD) remains a concern in metabolic syndrome (MetS). Smooth muscle cell proliferation, a major mechanism of CAD, is mediated partly by myoplasmic Ca2+ dysregulation and store-operated Ca2+ entry (SOCE) via canonical transient receptor(More)
Lung vascular endothelial barrier disruption and the accompanying inflammation are primary pathogenic features of acute lung injury (ALI); however, the basis for the development of both remains unclear. Studies have shown that activation of transient receptor potential canonical (TRPC) channels induces Ca(2+) entry, which is essential for increased(More)
Previous studies demonstrated that cross-linking of GM1 ganglioside with multivalent ligands, such as B subunit of cholera toxin (CtxB), induced Ca2+ influx through an unidentified, voltage-independent channel in several cell types. Application of CtxB to undifferentiated NG108-15 cells resulted in outgrowth of axon-like neurites in a Ca2+ influx-dependent(More)
TRPC5 are non-specific cation channels activated through phospholipase C-dependent pathways, although the precise gating mechanism is unknown. TRPC5 current-voltage relationships (I-Vs) change systematically during the activation-deactivation cycle, shifting between outwardly rectifying and doubly rectifying shapes. Since several TRP family members exhibit(More)