Alexander G. Loukianov

Learn More
In this paper, the authors propose a particle swarm optimization (PSO) for a discrete-time inverse optimal control scheme of a doubly fed induction generator (DFIG). For the inverse optimal scheme, a control Lyapunov function (CLF) is proposed to obtain an inverse optimal control law in order to achieve trajectory tracking. A posteriori, it is established(More)
This paper deals with adaptive tracking for discrete-time multiple-input-multiple-output (MIMO) nonlinear systems in presence of bounded disturbances. In this paper, a high-order neural network (HONN) structure is used to approximate a control law designed by the backstepping technique, applied to a block strict feedback form (BSFF). This paper also(More)
—In this note, we propose a solution to the well-know problem of ensuring a simultaneous globally convergent online estimation of the state and the frequencies of a sinusoid signal composed of sinusoidal terms. We present an estimator which guarantees global boundedness and convergence of the state and frequencies estimation for all initial conditions and(More)
—In this paper, a controller for induction motors is proposed. A continuous feedback is first applied to obtain a discrete-time model in closed form. Then, on the basis of these exact sampled dynamics, a discrete-time controller ensuring speed and flux modulus reference tracking is determined, making use of the sliding mode technique. The resulting(More)
—Based on the complete model of the plant, a sliding-mode stabilizing controller for synchronous generators is designed. The block control approach is used in order to derive a nonlinear sliding surface, on which the mechanical dynamics are linearized. This combined approach enables us to compensate the inherent nonlinearities of the generator and to reject(More)
This work deals with a sliding mode control scheme for discrete time nonlinear systems. The control law synthesis problem is subdivided into a finite number of subproblems of lower complexity, which can be solved independently. The sliding mode controller is designed to force the system to track a desired reference and to eliminate unwanted disturbances,(More)