Alexander G. Kvashnin

Learn More
The atomic structure and physical properties of few-layered 〈111〉 oriented diamond nanocrystals (diamanes), covered by hydrogen atoms from both sides, are studied using electronic band structure calculations. It was shown that energy stability linearly increases upon increasing of the thickness of proposed structures. All 2D carbon films display direct(More)
We explore how a few-layer graphene can undergo phase transformation into thin diamond film under reduced or no pressure, if the process is facilitated by hydrogenation of the surfaces. Such a "chemically induced phase transition" is inherently nanoscale phenomenon, when the surface conditions directly affect thermodynamics, and the transition pressure(More)
Results based on ab initio density functional calculations indicate that cubic diamond, boron nitride, and many other cubic structures including rocksalt share a general graphitization tendency in ultrathin films terminated by close-packed (111) surfaces. Whereas such compounds often show an energy preference for cubic rather than layered atomic(More)
We report theoretical analysis of the electronic flexoelectric effect associated with nanostructures of sp(2) carbon (curved graphene). Through the density functional theory calculations, we establish the universality of the linear dependence of flexoelectric atomic dipole moments on local curvature in various carbon networks (carbon nanotubes, fullerenes(More)
The atomic structure and elastic properties of silicon carbide nanowires of different shapes and effective sizes were studied using density functional theory and classical molecular mechanics. Upon surface relaxation, surface reconstruction led to the splitting of the wire geometry, forming both hexagonal (surface) and cubic phases (bulk). The behavior of(More)
We applied the ab initio approach to evaluate the stability and physical properties of the nanometer-thickness NaCl layered films and found that the rock salt films with a (111) surface become unstable with thickness below 1 nm and spontaneously split to graphitic-like films for reducing the electrostatic energy penalty. The observed sodium chloride(More)
  • 1