Alexander Duschau-Wicke

Learn More
Functional training is becoming the state-of-the-art therapy approach for rehabilitation of individuals after stroke and spinal cord injury. Robot-aided treadmill training reduces personnel effort, especially when treating severely affected patients. Improving rehabilitation robots towards more patient-cooperative behavior may further increase the effects(More)
Gait rehabilitation robots are of increasing importance in neurorehabilitation. Conventional devices are often criticized because they are limited to reproducing predefined movement patterns. Research on patient-cooperative control strategies aims at improving robotic behavior. Robots should support patients only as much as needed and stimulate them to(More)
In the past decade, several arm rehabilitation robots have been developed to assist neurological patients during therapy. Early devices were limited in their number of degrees of freedom and range of motion, whereas newer robots such as the ARMin robot can support the entire arm. Often, these devices are combined with virtual environments to integrate(More)
BACKGROUND Manual body weight supported treadmill training and robot-aided treadmill training are frequently used techniques for the gait rehabilitation of individuals after stroke and spinal cord injury. Current evidence suggests that robot-aided gait training may be improved by making robotic behavior more patient-cooperative. In this study, we have(More)
— For haptic devices, compensation of the robot's gravity is a frequent strategy with the aim to reduce interaction forces between robot and human in zero-impedance control. However, a closer look at the composition of these interaction forces may reveal that the net effect of uncompensated grav-itational components of the robot actually reduces interaction(More)
Within the European project MUNDUS, an assistive framework was developed for the support of arm and hand functions during daily life activities in severely impaired people. This contribution aims at designing a feedback control system for Neuro-Muscular Electrical Stimulation (NMES) to enable reaching functions in people with no residual voluntary control(More)
MUNDUS is an assistive framework for recovering direct interaction capability of severely motor impaired people based on arm reaching and hand functions. It aims at achieving personalization, modularity and maximization of the user’s direct involvement in assistive systems. To this, MUNDUS exploits any residual control of the end-user and can be adapted to(More)
Lower extremity rehabilitation has seen recent increased interest. New tools are available to improve gait retraining in both adults and children. However, it remains difficult to determine optimal ways to plan interventions due to difficulties in continuously monitoring outcomes in patients undergoing rehabilitation. In this paper, we introduce an(More)
The rehabilitation robot LOKOMAT has been developed at the Balgrist University Hospital to automate treadmill training of spinal cord injury and stroke patients. A virtual environment setup was implemented to increase patient's motivation and provide biofeedback, consisting of visual, acoustic and haptic modalities. Based on the knee and hip angles of the(More)