Learn More
  • Jana Hartmann, Elena Dragicevic, Helmuth Adelsberger, Horst A. Henning, Martin Sumser, Joel Abramowitz +6 others
  • 2008
In the mammalian central nervous system, slow synaptic excitation involves the activation of metabotropic glutamate receptors (mGluRs). It has been proposed that C1-type transient receptor potential (TRPC1) channels underlie this synaptic excitation, but our analysis of TRPC1-deficient mice does not support this hypothesis. Here, we show unambiguously that(More)
Among the TRPC subfamily of TRP (classical transient receptor potential) channels, TRPC3, -6, and -7 are gated by signal transduction pathways that activate C-type phospholipases as well as by direct exposure to diacylglycerols. Since TRPC6 is highly expressed in pulmonary and vascular smooth muscle cells, it represents a likely molecular candidate for(More)
— One of the fundamental demands on robotic systems is a safe interaction with their environment. For fulfilling that condition, both collisions with obstacles and the own structure have to be avoided. We address the problem of self-collisions and propose an algorithm for its avoidance which is based on artificial repulsion potential fields and applicable(More)
— The mobile humanoid Rollin'Justin is a versatile experimental platform for research in manipulation tasks. Previously, different state of the art control methods and first autonomous task execution scenarios have been demonstrated. In this video two new applications with challenging task requirements are presented. One is the catching of one or even two(More)
— Service robotics is expected to be established in human households and environments within the next decades. Therefore, dexterous and flexible behavior of these systems as well as guaranteeing safe interaction are crucial for that progress. We address these issues in terms of control strategies for the whole body of DLR's humanoid Justin. Via impedance(More)
— A ball catching scenario with the mobile humanoid Rollin' Justin is presented. It can catch up to two simultaneously thrown balls with its hands, reaching a catch rate of over 80%. All DOF (degrees of freedom), i.e., the arms, the torso, and the mobile platform, are used for the reaching motion and the system works completely wirelessly using only onboard(More)
—Reactively dealing with self-collisions is an important requirement on multi-DOF robots in unstructured and dynamic environments. Classical methods to integrate respective algorithms into task hierarchies cause substantial problems: Either these unilateral safety constraints are permanently active , unnecessarily locking DOF for other tasks, or they get(More)
— One characteristic attribute of mobile platforms equipped with a set of independent steering wheels is their omnidirectionality and the ability to realize complex transla-tional and rotational trajectories. An accurate coordination of steering angle and spinning rate of each wheel is necessary for a consistent motion. Since the orientations of the wheels(More)
—In this article, we present a control framework for reactive mobile manipulation of robotic systems with a large number of actuated degrees of freedom (DOF). We apply the concept to the humanoid robot Rollin' Justin of the German Aerospace Center (DLR). As service robotics is expected to be established in households and human environments in the near(More)
— The technological progress in the field of robotics results in more and more complex manipulators. However, having an increasing number of degrees of freedom raises the question of how to use them effectively. In turn, establishing manipulators in human environments, e.g., as service robots, calls for the fulfillment of various constraints and tasks at(More)