Alexander Deiters

Learn More
The migration of cortical projection neurons is a multistep process characterized by dynamic cell shape remodeling. The molecular basis of these changes remains elusive, and the present work describes how microRNAs (miRNAs) control neuronal polarization during radial migration. We show that miR-22 and miR-124 are expressed in the cortical wall where they(More)
Here, we report a generally applicable PEGylation methodology based on the site-specific incorporation of para-azidophenylalanine into proteins in yeast. The azido group was used in a mild [3+2] cycloaddition reaction with an alkyne derivatized PEG reagent to afford selectively PEGylated protein. This strategy should be useful for the generation of(More)
We developed a new system for light-induced protein dimerization in living cells using a photocaged analogue of rapamycin together with an engineered rapamycin binding domain. Using focal adhesion kinase as a target, we demonstrated successful light-mediated regulation of protein interaction and localization in living cells. Modification of this approach(More)
We report the discovery of a simple system through which variant pyrrolysyl-tRNA synthetase/tRNA(CUA Pyl) pairs created in Escherichia coli can be used to expand the genetic code of Saccharomyces cerevisiae. In the process we have solved the key challenges of producing a functional tRNA(CUA Pyl) in yeast and discovered a pyrrolysyl-tRNA synthetase/tRNA(CUA(More)
We report a general strategy for creating protein kinases in mammalian cells that are poised for very rapid activation by light. By photoactivating a caged version of MEK1, we demonstrate the specific, rapid, and receptor independent activation of an artificial subnetwork within the Raf/MEK/ERK pathway. Time-lapse microscopy allowed us to precisely(More)
Detailed knowledge of the external regulation of gene function is a fundamental necessity in order to annotate sequenced genomes and to understand biological processes in single cells and multicellular organisms. One of the most widely used approaches for the down-regulation of specific genes is the application of antisense agents. Antisense agents are(More)
Human mitochondrial methionine transfer RNA (hmtRNA(Met)(CAU)) has a unique post-transcriptional modification, 5-formylcytidine, at the wobble position-34 (f(5)C(34)). The role of this modification in (hmtRNA(Met)(CAU)) for the decoding of AUA, as well as AUG, in both the peptidyl- and aminoacyl-sites of the ribosome in either chain initiation or chain(More)
Controlled manipulation of proteins and their function is important in almost all biological disciplines. Here, we demonstrate control of protein activity with light. We present two different applications-light-triggered transcription and light-triggered protease cleavage-both based on the same concept of protein mislocation, followed by optochemically(More)