Alexander D. Schenkman

Learn More
The Advanced Regional Prediction System (ARPS) model is employed to perform high-resolution numerical simulations of a mesoscale convective system and associated cyclonic line-end vortex (LEV) that spawned several tornadoes in central Oklahoma on 8–9 May 2007. The simulation uses a 1000 km 3 1000 km domain with 2-km horizontal grid spacing. The ARPS(More)
The impact of radar and Oklahoma Mesonet data assimilation on the prediction of mesovortices in a tornadic mesoscale convective system (MCS) is examined. The radar data come from the operational Weather Surveillance Radar-1988 Doppler (WSR-88D) and the Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere’s (CASA) IP-1 radar(More)
TheAdvanced Regional Prediction System (ARPS) is used to simulate a tornadic mesovortex with the aim of understanding the associated tornadogenesis processes. The mesovortex was one of two tornadic mesovortices spawned by a mesoscale convective system (MCS) that traversed southwestern and central Oklahoma on 8–9 May 2007. The simulation used 100-m(More)
A50-m-grid-spacingAdvancedRegional Prediction System (ARPS) simulation of the 8May 2003Oklahoma City tornadic supercell is examined.A 40-min forecast run on the 50-m grid produces twoF3-intensity tornadoes that track within 10km of the location of the observed long-track F4-intensity tornado. The development of both simulated tornadoes is analyzed to(More)
The 8 May 2003 Oklahoma City, Oklahoma, tornadic supercell is predicted with the Advanced Regional Prediction System (ARPS)model using four nested grids with 9-km, 1-km, 100-m, and 50-m grid spacings. The Oklahoma City Weather Surveillance Radar-1988 Doppler (WSR-88D) radial velocity and reflectivity data are assimilated through the ARPS three-dimensional(More)
In late 2006, the NSF Engineering Research Center (ERC) for Collaborative and Adaptive Sensing of the Atmosphere (CASA, McLaughlin et al. 2005) began its first integrated project (IP1, Brotzge et al. 2007). CASA-IP1 consists of a network of four x-band dual-polarization Doppler radars in southwest Oklahoma. During the spring of 2007, this radar network(More)
Progress and challenges with Warn-on-Forecast David J. Stensrud ⁎, Louis J. Wicker , Ming Xue , Daniel T. Dawson II , Nusrat Yussouf , Dustan M. Wheatley , Therese E. Thompson , Nathan A. Snook , Travis M. Smith , Alexander D. Schenkman , Corey K. Potvin , Edward R. Mansell , Ting Lei , Kristin M. Kuhlman , Youngsun Jung , Thomas A. Jones , Jidong Gao ,(More)
In this two-part paper, the impact of assimilating data from the WSR-88D and the Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere's (CASA) IP-1 radar network on the prediction of a tornadic mesoscale convective system is examined. The Advanced Regional Prediction System (ARPS) prediction model is employed to perform(More)
The 8 May 2003 Oklahoma City tornadic supercell is predicted with the ARPS model using four nested grids with 9-km, 1-km, 100-m, and 50-m grid spacings. The Oklahoma City WSR-88D radar radial velocity and reflectivity data are assimilated through the ARPS 3DVAR and cloud analysis on the 1-km grid to generate an initial condition that includes a(More)