Alexander Benjamin Meijer

Learn More
During infection the major coat protein of the filamentous bacteriophage M13 is in the cytoplasmic membrane of the host Escherichia coli. This study focuses on the configurational properties of the N-terminal part of the coat protein in the membrane-bound state. For this purpose X-Cys substitutions are generated at coat protein positions 3, 7, 9, 10, 11,(More)
The response to hydrophobic mismatch of membrane-bound M13 major coat protein is measured using site-directed fluorescence and ESR spectroscopy. For this purpose, we investigate the membrane-anchoring interactions of M13 coat protein in model systems consisting of phosphatidylcholine bilayers that vary in hydrophobic thickness. Mutant coat proteins are(More)
The M13 major coat protein has been extensively studied in detergent-based and phospholipid model systems to elucidate its structure. This resulted in an L-shaped model structure of the protein in membranes. An amphipathic alpha-helical N-terminal arm, which is parallel to the surface of the membrane, is connected via a flexible linker to an alpha-helical(More)
During storage, erythrocytes undergo changes that alter their clearance and function after transfusion and there is increasing evidence that these changes contribute to the complications observed in transfused patients. Stored erythrocytes were incubated overnight at 37°C to mimic the temperature after transfusion. After incubation, several markers for(More)
We present the clinical, biochemical and genomic findings of a family with congenital factor XIII (FXIII) deficiency. Congenital FXIII deficiency is a very rare autosomal recessive bleeding disorder, characterized by umbilical cord bleeding at birth and spontaneous intracranial haemorrhage. Routine clotting tests are normal, which may delay the diagnosis,(More)
Anti-neutrophil cytoplasm autoantibodies (ANCA) directed against proteinase-3 and myeloperoxidase (MPO) activate tumor necrosis factor-alpha-primed neutrophils in vitro. We used neutrophils from one completely and one partially MPO-deficient donor to assess the requirement of MPO expression for neutrophil activation by anti-MPO antibodies. The MPO(More)
Low-density lipoprotein receptor-related protein (LRP) is an endocytic receptor that binds multiple distinct ligands, including blood coagulation factor VIII (FVIII). FVIII is a heterodimeric multidomain protein that consists of a heavy chain (domains A1, a1, A2, a2, and B) and a light chain (domains a3, A3, C1, and C2). Both chains contribute to(More)
BACKGROUND Low-density lipoprotein (LDL) receptor family members contribute to the cellular uptake of factor VIII. How von Willebrand factor fits into this endocytic pathway has remained poorly understood. OBJECTIVES It has been suggested that macrophages contribute to the clearance of the factor VIII (FVIII)-von Willebrand factor (VWF) complex. We now(More)
Familial hemophagocytic lymphohistiocytosis (FHL) is caused by genetic defects in cytotoxic granule components or their fusion machinery, leading to impaired natural killer cell and/or T lymphocyte degranulation and/or cytotoxicity. This may accumulate into a life-threatening condition known as macrophage activation syndrome. STXBP2, also known as MUNC18-2,(More)
BACKGROUND Low-density lipoprotein receptor-related protein (LRP) is an endocytic receptor that contributes to the clearance of coagulation factor (F) VIII from the circulation. Previously, we have demonstrated that region Glu(1811)-Lys(1818) within FVIII light chain constitutes an important binding region for this receptor. We have further found that FVIII(More)