Learn More
Seven novel short linear antimicrobial and cytolytic peptides named latarcins were purified from the venom of the spider Lachesana tarabaevi. These peptides were found to produce lytic effects on cells of diverse origin (Gram-positive and Gram-negative bacteria, erythrocytes, and yeast) at micromolar concentrations. In addition, five novel peptides that(More)
Two forms of a novel antimicrobial peptide (AMP), named WAMP-1a and WAMP-1b, that differ by a single C-terminal amino acid residue and belong to a new structural type of plant AMP were purified from seeds of Triticum kiharae Dorof. et Migusch. Although WAMP-1a and WAMP-1b share similarity with hevein-type peptides, they possess 10 cysteine residues arranged(More)
Spider venoms are vast natural pharmacopoeias selected by evolution. The venom of the ant spider Lachesana tarabaevi contains a wide variety of antimicrobial peptides. We tested six of them (latarcins 1, 2a, 3a, 4b, 5, and cytoinsectotoxin 1a) for their ability to suppress Chlamydia trachomatis infection. HEK293 cells were transfected with plasmid vectors(More)
Antimicrobial peptides (AMPs) constitute a diverse group of compounds that serve a common goal that is host organism defense from infection. Due to their antimicrobial properties, these molecules attract practical interest as potential antibiotics for medical and veterinary use as well as enhancers of plant disease resistance for agriculture. Broad AMP(More)
Eight linear cationic peptides with cytolytic and insecticidal activity, designated cyto-insectotoxins (CITs), were identified in Lachesana tarabaevi spider venom. The peptides showed antibiotic activity towards Gram-positive and Gram-negative bacteria at micromolar concentrations as well as toxicity to insects. The primary structures of the toxins were(More)
A new peptide trypsin inhibitor named BWI-2c was obtained from buckwheat (Fagopyrum esculentum) seeds by sequential affinity, ion exchange and reversed-phase chromatography. The peptide was sequenced and found to contain 41 amino acid residues, with four cysteine residues involved in two intramolecular disulfide bonds. Recombinant BWI-2c identical to the(More)
A novel family of antifungal peptides was discovered in the wheat Triticum kiharae Dorof. et Migusch. Two members of the family, designated Tk-AMP-X1 and Tk-AMP-X2, were completely sequenced and shown to belong to the α-hairpinin structural family of plant peptides with a characteristic C1XXXC2-X(n)-C3XXXC4 motif. The peptides inhibit the spore germination(More)
Plant defense against disease is a complex multistage system involving initial recognition of the invading pathogen, signal transduction and activation of specialized genes. An important role in pathogen deterrence belongs to so-called plant defense peptides, small polypeptide molecules that present antimicrobial properties. Using multidimensional liquid(More)
Spider venom, a factor that has played a decisive role in the evolution of one of the most successful groups of living organisms, is reviewed. Unique molecular diversity of venom components including substances of variable structure (from simple low molecular weight compounds to large multidomain proteins) with different functions is considered. Special(More)
Venom of the ant spider Lachesana tarabaevi contains a wide variety of antimicrobial peptides. Among them, a special place belongs to cyto-insectotoxins, a class of cytolytic molecules showing equally potent antimicrobial and insecticidal effects. We tested one of them, CIT 1a, for ability to suppress Chlamydia trachomatis infection. HEK293 cells were(More)