Learn More
Spatial patterns of cellular growth generate mechanical stresses that help to push, fold, expand, and deform tissues into their specific forms. Genetic factors are thought to specify patterns of growth and other behaviors to drive morphogenesis. Here, we show that tissue form itself can feed back to regulate patterns of proliferation. Using(More)
We investigated the mechanotransduction pathway in endothelial cells between their nucleus and adhesions to the extracellular matrix. First, we measured nuclear deformations in response to alterations of cell shape as cells detach from a flat surface. We found that the nuclear deformation appeared to be in direct and immediate response to alterations of the(More)
The outer hair cell makes both passive and active contributions to basilar membrane mechanics. The outer hair cell mechanics is strongly coupled to the elastic properties of the cell lateral wall. The lateral wall experiences both in-plane deformations and bending under physiological and experimental conditions. To characterize the outer hair cell wall, the(More)
Protrusions are deformations that form at the surface of living cells during biological activities such as cell migration. Using combined optical tweezers and fluorescent microscopy, we quantified the mechanical properties of protrusions in adherent human embryonic kidney cells in response to application of an external force at the cell surface. The(More)
We analyze the nonlinear behavior of the longitudinal and circumferential components of the active force generated by the outer hair cell wall in response to changes of its transmembrane potential. We treat the material of the wall as electroelastic, linear orthotropic in terms of strains and as nonlinear in terms of the transmembrane potential. To describe(More)
  • A A Spector
  • 1999
A nonlinear electroelastic model for the composite wall of the cochlear outer hair cell is proposed. The cell wall is modeled as a two-layer shell with elastic connections between the layers: an active layer corresponds to the plasma membrane and a passive layer corresponds to a combination of the cytoskeleton and the subsurface cisternae. As a basis of the(More)
Outer hair cell electromotility is crucial for the amplification, sharp frequency selectivity, and nonlinearities of the mammalian cochlea. Current modeling efforts based on morphological, physiological, and biophysical observations reveal transmembrane potential gradients and membrane tension as key independent variables controlling the passive and active(More)
The low-pass voltage response of outer hair cells predicted by conventional equivalent circuit analysis would preclude the active force production at high frequencies. We have found that the band pass characteristics can be improved by introducing the piezoelectric properties of the cell wall. In contrast to the conventional analysis, the receptor potential(More)
Membrane protein prestin is a critical component of the motor complex that generates forces and dimensional changes in cells in response to changes in the cell membrane potential. In its native cochlear outer hair cell, prestin is crucial to the amplification and frequency selectivity of the mammalian ear up to frequencies of tens of kHz. Other cells(More)
We consider the mechanical properties of the outer hair cell cytoskeleton. The cytoskeleton is represented as a set of microdomains of different sizes and orientations composed of actin filaments and spectrin crosslinks. An intermediate material between domains is also introduced. The domain characteristics are randomly generated and the histograms of the(More)