Learn More
Concepts of functionally based geometric modeling including sets of objects, operations, and relations are discussed. Transformations of a defining real function are described for set-theoretic operations, blending, offsetting, bijective mapping, projection, cartesian products, and metamorphosis. Inclusion, point membership, and intersection relations are(More)
This paper presents a project devoted to developing an open system architecture for functionally based (implicit or more generally F-rep) shape modeling and its applications. The software tools are built around the shape models written in a high-level programming language called HyperFun. A model in HyperFun can serve as a protocol for exchanging F-rep(More)
This paper presents a novel approach to the reconstruction of geometric models and surfaces from given sets of points using volume splines. It results in the representation of a solid by the inequality The volume spline is based on use of the Green's function for interpolation of scalar function values of a chosen " carrier " solid. Our algorithm is capable(More)
This paper deals with modeling point sets with attributes. A point set in a geometric space of an arbitrary dimension is a geometric model of a real/abstract object or process under consideration. An attribute is a mathematical model of an object property of arbitrary nature (material, photometric, physical, statistical, etc.) defined at any point of the(More)
We present a general mathematical framework for transforming functionally defined shapes. The proposed model of extended space mappings considers transformations of a hypersurface in coordinate-function space with its projection onto geometric space. This model covers coordinate space mappings, metamorphosis, and algebraic operations on defining functions,(More)
Surface creases provide us with important information about the shapes of objects and can be intuitively defined as curves on a surface along which the surface bends sharply. Our mathematical description of such surface creases is based on study of extrema of the principal curvatures along their curvature lines. On a smooth generic surface we define ridges(More)
The paper presents a novel approach for accurate polygo-nization of implicit surfaces with sharp features. The approach is based on mesh evolution towards a given implicit surface with simultaneous control of the mesh vertex positions and mesh normals. Given an initial polygonization of an implicit surface, a mesh evolution process initialized by the(More)
The paper presents an approach to modeling heterogeneous objects as multidimensional point sets with multiple attributes (hypervolumes). A theoretical framework is based on a hybrid model of hypervolumes combining a cellular representation and a constructive representation using real-valued functions. This model allows for independent but unifying(More)
Member Summary Recent advances of Web information systems such as e-commerce and e-learning have created very large but hidden demands on conceptual multiresolution analysis for more generalized information analysis, cognition and modeling. To meet the demands in a general way, its modeling is formulated based on modern algebraic topology. To be specific,(More)