Alexander A. Oliferenko

Learn More
A new model for predicting the UV-visible absorption spectra of secondary organic aerosols (SOA) has been developed. The model consists of two primary parts: a SOA formation model and a semiempirical quantum chemistry method. The mass of SOA is predicted using the PHRCSOA (Partitioning Heterogeneous Reaction Consortium Secondary Organic Aerosol) model(More)
The Kirchhoff charge model is a viable method of generating inexpensive and electrostatically reasonable atomic charges for molecular mechanical force fields. The charging method uses a computationally fast algorithm based on the principle of electronegativity relaxation. Parameters of the method, orbital electronegativities and hardnesses, are fitted to(More)
This paper presents a computational approach to the deliberate design of improved host architectures. The approach, which involves the use of computer-aided design software, is illustrated by application to cation hosts containing multiple aliphatic ether oxygen binding sites. De novo molecule building software, HostDesigner, is interfaced with molecular(More)
Two fast empirical charge models, Kirchhoff Charge Model (KCM) and Dynamic Electronegativity Relaxation (DENR), had been developed in our laboratory previously for widespread use in drug design research. Both models are based on the electronegativity relaxation principle (Adv. Quantum Chem. 2006, 51, 139-156) and parameterized against ab initio(More)
An improved strategy of quantitative structure-property relationship (QSPR) studies of diverse and inhomogeneous organic datasets has been proposed. A molecular connectivity term was successively corrected for different structural features encoded in fragmental descriptors. The so-called solvation index 1chis (a weighted Randic index) was used as a(More)
We present an extended QSPR modeling of solubilities of about 500 substances in series of up to 69 diverse solvents. The models are obtained with our new software package, CODESSA PRO, which is furnished with an advanced variable selection procedure and a large pool of theoretically derived molecular descriptors. The squared correlation coefficients and(More)
As part of our general QSPR treatment of solubility (started in the preceding paper), we now present quantitative relationships between solvent structures and the solvation free energies of individual solutes. Solvation free energies of 80 diverse organic solutes are each modeled in a range from 15 to 82 solvents using our CODESSA PRO software. Significant(More)
Quantitative structure-activity relationships (QSAR) for HIV-1 protease inhibitory activity of substituted tetrahydropyrimidinones have been produced using CODESSA PRO methodology and software. The best four-parameter equation (R(2)(cv)=0.847) allowed us to reveal two main structural factors which are strongly correlated with the title activity: molecular(More)
Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, chikungunya, and dengue fever. A large number of analogues were evaluated by virtual screening with Glide molecular docking software. This produced(More)
Efficient scrubbing of mercury vapour from natural gas streams has been demonstrated both in the laboratory and on an industrial scale, using chlorocuprate(II) ionic liquids impregnated on high surface area porous solid supports, resulting in the effective removal of mercury vapour from natural gas streams. This material has been commercialised for use(More)