Alexander A. Mironov

Learn More
Gene recognition is one of the most important problems in computational molecular biology. Previous attempts to solve this problem were based on statistics, and applications of combinatorial methods for gene recognition were almost unexplored. Recent advances in large-scale cDNA sequencing open a way toward a new approach to gene recognition that uses(More)
Newly synthesized procollagen type I (PC) assembles into 300 nm rigid, rod-like triple helices in the lumen of the endoplasmic reticulum. This oligomeric complex moves to the Golgi and forms large electron-dense aggregates. We have monitored the transport of PC along the secretory pathway. We show that PC moves across the Golgi stacks without ever leaving(More)
The organization of secretory traffic remains unclear, mainly because of the complex structure and dynamics of the secretory pathway. We have thus studied a simplified system, a single synchronized traffic wave crossing an individual Golgi stack, using electron tomography. Endoplasmic-reticulum-to-Golgi carriers join the stack by fusing with cis cisternae(More)
Transport intermediates (TIs) have a central role in intracellular traffic, and much effort has been directed towards defining their molecular organization. Unfortunately, major uncertainties remain regarding their true structure in living cells. To address this question, we have developed an approach based on the combination of the green fluorescent(More)
The small GTP-binding ADP-ribosylation factor 1 (ARF1) acts as a master regulator of Golgi structure and function through the recruitment and activation of various downstream effectors. It has been proposed that members of the Rho family of small GTPases also control Golgi function in coordination with ARF1, possibly through the regulation of Arp2/3 complex(More)
Recognition of transcription regulation sites (operators) is a hard problem in computational molecular biology. In most cases, small sample size and low degree of sequence conservation preclude the construction of reliable recognition rules. We suggest an approach to this problem based on simultaneous analysis of several related genomes. It appears that as(More)
Intragenomic and intergenomic comparisons of upstream nucleotide sequences of archaeal genes were performed with the goal of predicting transcription regulatory sites (operators) and identifying likely regulons. Learning sets for the detection of regulatory sites were constructed using the available experimental data on archaeal transcription regulation or(More)
new era in computational genomics. Gene complements are successfully analysed on the protein level. However, it has been noted that regulatory sites are less conserved than genes1, although it is possible to use genomic comparisons in order to predict gene regulation at the level of DNA (Ref. 2) and RNA (Refs 3, 4). Indeed, comparative analysis is one of(More)
Alternative splicing can produce variant proteins and expression patterns as different as the products of different genes, yet the prevalence of alternative splicing has not been quantified. Here the spliced alignment algorithm was used to make a first inventory of exon-intron structures of known human genes using EST contigs from the TIGR Human Gene Index.(More)
Localizing the cellular prion protein (PrPC) in the brain is necessary for understanding the pathogenesis of prion diseases. However, the precise ultrastructural localization of PrPC still remains enigmatic. We performed the first quantitative study of the ultrastructural localization of PrPC in the mouse hippocampus using high-resolution cryoimmunogold(More)