Alexander A. Kokhanovsky

Learn More
Multiple light scattering is an important issue in modern laser diffraction spectrometry. Most laser particle sizers do not account for multiple light scattering in a disperse medium under investigation. This causes an underestimation of the particle sizes in the case of high concentrations of scatterers. The retrieval accuracy is improved if the measured(More)
Permanent snow and ice cover great portions of the Arctic and the Antarctic. It appears in winter months in northern parts of America, Asia, and Europe. Therefore snow is an important component of the hydrological cycle. Also, it is a main regulator of the seasonal variation of the planetary albedo. This seasonal change in albedo is determined largely by(More)
An inter-comparison study of the aerosol optical thickness (AOT) at 0.55 μm retrieved using different satellite instruments and algorithms based on the analysis of backscattered solar light is presented for a single scene over central Europe on October 13th, 2005. For the first time comparisons have been performed for as many as six instruments on multiple(More)
A recently developed cloud retrieval algorithm for the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) is briefly presented and validated using independent and well tested cloud retrieval techniques based on the look-up-table approach for MODeration resolutIon Spectrometer (MODIS) data. The results of the cloud top height(More)
In this paper simple analytical equations for the reflection and transmission coefficients of fluorescent turbid media are given. The case of weakly absorbing optically thick media is considered (e.g., paper, textiles, tissues). The calculations are performed in the framework of the two-flux approximation for finite layers under monochromatic illumination(More)
For the determination of aerosol optical thickness (AOT) Bremen AErosol Retrieval (BAER) has been developed. Method and main features on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum(More)
The semianalytical cloud retrieval algorithm for SCIAMACHY – I. The validation A. A. Kokhanovsky, V. V. Rozanov, T. Nauss, C. Reudenbach, J. S. Daniel, H. L. Miller, and J. P. Burrows Institute of Remote Sensing, University of Bremen, Germany Department of Geography, University of Marburg, Germany Aeronomy Laboratory, NOAA, Boulder, Colorado, USA(More)