Learn More
Dot1 methylates histone H3 lysine 79 (H3K79) on the nucleosome core and is involved in Sir protein-mediated silencing. Previous studies suggested that H3K79 methylation within euchromatin prevents nonspecific binding of the Sir proteins, which in turn facilitates binding of the Sir proteins in unmethylated silent chromatin. However, the mechanism by which(More)
1998 Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-­‐mediated gene disruption and other applications. Yeast 14: 115-­‐132. A new efficient gene disruption cassette for repeated use in budding yeast. rearrangements by histone methylation-­‐dependent and-­‐independent mechanisms.(More)
We have developed a system for mutational analysis of Saccharomyces cerevisiae ribosomal RNA in vivo in which yeast cells can be made completely dependent on mutant rRNA and ribosomes by a simple switch in carbon source. The system is based on a yeast strain defective in RNA polymerase I (Pol I) transcription [Nogi et al. (1991) Proc. Natl. Acad. Sci. USA(More)
Saccharomyces cerevisiae Rio2p (encoded by open reading frame Ynl207w) is an essential protein of unknown function that displays significant sequence similarity to Rio1p/Rrp10p. The latter was recently shown to be an evolutionarily conserved, predominantly cytoplasmic serine/threonine kinase whose presence is required for the final cleavage at site D that(More)
BACKGROUND Methylation of lysine 79 on histone H3 by Dot1 is required for maintenance of heterochromatin structure in yeast and humans. However, this histone modification occurs predominantly in euchromatin. Thus, Dot1 affects silencing by indirect mechanisms and does not act by the recruitment model commonly proposed for histone modifications. To better(More)
Eukaryotes have two types of ribosomes containing either 5.8SL or 5.8SS rRNA that are produced by alternative pre-rRNA processing. The exact processing pathway for the minor 5.8SL rRNA species is poorly documented. We have previously shown that the trans-acting factor Rrp5p and the RNA exonuclease Rex4p genetically interact to influence the ratio between(More)
BACKGROUND Methylation of histone H3 lysine 79 (H3K79) by Dot1 is highly conserved among species and has been associated with both gene repression and activation. To eliminate indirect effects and examine the direct consequences of Dot1 binding and H3K79 methylation, we investigated the effects of targeting Dot1 to different positions in the yeast genome.(More)
Saccharomyces cerevisiae contains three nonessential genes (NGL1, NGL2, and NGL3) that encode proteins containing a domain with similarity to a Mg(2+)-dependent endonuclease motif present in the mRNA deadenylase Ccr4p. We have investigated a possible role of these proteins in rRNA processing, because for many of the pre-rRNA processing steps, the identity(More)
Biogenesis of eukaryotic ribosomal subunits proceeds via a series of precursor ribonucleoprotein particles that correspond to different stages in the maturation pathway. The different pre-ribosomal particles each contain a distinct complement of non-ribosomal, trans-acting factors that are crucial for correct and efficient progress of the maturation(More)
Mutational analysis has shown that the integrity of the region in domain III of 25S rRNA that is involved in binding of ribosomal protein L25 is essential for the production of mature 25S rRNA in the yeast Saccharomyces cerevisiae. However, even structural alterations that do not noticeably affect recognition by L25, as measured by an in vitro assay,(More)