Learn More
BACKGROUND Normal preimplantation embryo development encompasses a series of events including first cleavage division, activation of the embryonic genome, compaction and blastocyst formation. First lineage differentiation starts at the blastocyst stage with the formation of the trophectoderm and the inner cell mass. The main objective of this study was the(More)
Faecal egg count reduction tests (FECRT) using ivermectin (IVM) and benzimidazole (BZ) were conducted to investigate the prevalence of anthelmintic resistance in gastro-intestinal nematodes on cattle farms in Germany, Belgium and Sweden in 2006 and 2007. Based on sufficient numbers of eggs prior to the study, between 3 and 10 farms per country were(More)
BACKGROUND TSEs are a group of fatal neurodegenerative diseases occurring in man and animals. They are caused by prions, alternatively folded forms of the endogenous prion protein, encoded by PRNP. Since differences in the sequence of PRNP can not explain all variation in TSE susceptibility, there is growing interest in other genes that might have an(More)
There is cumulating evidence that microRNAs (miRNAs) are important regulators of pluripotency and differentiation and, hence, of early lineage segregation in embryo development. To unravel the function of specific miRNAs, it is important not only to analyze miRNA expression in the entire blastocyst but also to determine the site and level of expression in(More)
BACKGROUND Real-time quantitative PCR is a sensitive and very efficient technique to examine gene transcription patterns in preimplantation embryos, in order to gain information about embryo development and to optimize assisted reproductive technologies. Critical to the successful application of real-time PCR is careful assay design, reaction optimization(More)
BACKGROUND An essential part of using real-time RT-PCR is that expression results have to be normalized before any conclusions can be drawn. This can be done by using one or multiple, validated reference genes, depending on the desired accuracy of the results. In the pig however, very little information is available on the expression stability of reference(More)
We report here the characterisation of porcine PPARGC1A. Primers based on human PPARGC1A were used to isolate two porcine BAC clones. Porcine coding sequences of PPARGC1A were sequenced together with the splice site regions and the 5' and 3' regions. Using direct sequencing nine SNPs were found. Allele frequencies were determined in unrelated animals of(More)
BACKGROUND Scrapie and BSE belong to a group of fatal, transmissible, neurodegenerative diseases called TSE. In order to minimize the risk of natural scrapie and presumed natural BSE in sheep, breeding programmes towards TSE resistance are conducted in many countries based on resistance rendering PRNP polymorphisms at codons 136 (A/V), 154 (R/H) and 171(More)
Knowledge of in vivo relationship between the coactivator PPARGC1A and its target genes is very limited, especially in the pig. In this study, a real-time PCR experiment was performed on longissimus dorsi muscle (MLD) and backfat with 10 presumed PPARGC1A downstream target genes, involved in energy and fat metabolism, to identify possible relationships with(More)
The BAT1 gene has previously been identified about 30 kb upstream from the tumor necrosis factor (TNF) locus and close to a NF kappa b-related gene of the nuclear factor family in the major histocompatibility complex (MHC) of human, mouse, and pig. We now show that the BAT1 translation product is the homolog of the rat p47 nuclear protein, the WM6(More)