Alex V. Krusche

Learn More
The Amazon Basin is the world's largest tropical forest region and one where rapid human changes to land cover have the potential to cause significant changes to hydrological and biogeochemical processes. The Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is a multidisciplinary, multinational research program led by Brazil. The goal of LBA is(More)
Litter decomposition is a fundamental process for nutrient cycling but we have a limited understanding of this process in disturbed tropical forests. We studied litter decomposition over a 10-mo period in a seasonally dry Amazon forest in Mato Grosso, Brazil. The study plots (50 ha each) included unburned forest (UF), once-burned (BF1) and forest burned(More)
Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High(More)
[1] Large Amazonian rivers are known to emit substantial amounts of CO 2 to the atmosphere, while the magnitude of CO 2 degassing from small streams remains a major unknown in regional carbon budgets. We found that 77% of carbon transported by water from the landscape was as terrestrially-respired CO 2 dissolved within soils, over 90% of which evaded to the(More)
The chemical composition of ground waters and stream waters is thought to be determined primarily by weathering of parent rock. In relatively young soils such as those occurring in most temperate ecosystems, dissolution of primary minerals by carbonic acid is the predominant weathering pathway that liberates Ca2+, Mg2+ and K+ and generates alkalinity in the(More)
Rates of deforestation in the Amazon region have been accelerating, but the quantity and timing of nutrient losses from forested and deforested ecosystems are poorly understood. This paper investigates the broad variation in soil properties of the Amazon Basin as they influence transfers of plant nutrients from the terrestrial biosphere to the atmosphere(More)
BACKGROUND The Amazon River runs nearly 6500 km across the South American continent before emptying into the western tropical North Atlantic Ocean. In terms of both volume and watershed area, it is the world's largest riverine system, affecting elemental cycling on a global scale. RESULTS A quantitative inventory of genes and transcripts benchmarked with(More)
Transport dynamics of fine particulate organic matter in two Idaho streams. 13 C of organic-carbon in the bengal fan—source evolution and transport of C3 and C4 plant carbon to marine-sediments. Geochim. Cosmo-chim. Acta 58: 4809–4814. Carbon isotope composition and geochemistry of particulate organic matter in the Congo River (Central Africa): Application(More)
  • 1